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1. Introduction

Given a Riemannian Spin‘-manifold M with free isometric action of the circle we can
rescale the metric of M in the direction of the orbits. The main aim of the present thesis
is to compute the limit of the n-invariant of equivariant twisted Dirac operators when
the orbits are shrinked. For that purpose the Atiyah-Patodi-Singer index theorem for
manifolds with boundary will be applied to the disc bundle associated to M. The index
of the Dirac operator will be shown to vanish if the scalar curvature M and the connec-
tions on the canonical complex line bundle of the Spin‘-structure and on the twisting
bundle satisfy Hitchin-Lichnerowicz’s estimate. O’Neill’s formulae for the curvature of
Riemannian submersions yield formulae for the limit of the characteristic integral in the
Atiyah-Patodi-Singer index formula.

In some cases the n-invariant of the Dirac operator has been computed directly out of
the Dirac spectrum, e.g. by Hitchin (see[Hit]) for the Berger spheres, by Seade-Steer
(see [SS]) for quotients of PSLy(R) by Fuchsian groups. There are also general formulae
by Bismut-Cheeger ([BC]) and Dai ([Dai]) for the adiabatic limit of the n-invariant in
fibrations. This has recently been made explicit for S'-bundles by W. Zhang in [Zh] thus
also deriving formulae for the adiabatic limit of n-invariants.

For some invariants on zero bordant manifolds which are defined by choosing a zero
bordism one can find expressions involving n-invariants. These are more intrinsic in the
sense that one can compute them within the manifold. Instead of choosing a zero bordism
one has to choose a Riemannian metric.

Examples:

e The Rohlin invariant of an (8% + 3)-dimensional Spin-boundary is the reduction
modulo 16 of the signature of a Spin-zero bordism. This is well-defined because by
a theorem of S. Ochanine (see [Oc]) the signature of a closed (8% + 4)-dimensional
manifold is divisible by 16 and by a result of Novikov the signature is additive
under the operation of glueing two manifolds along a common boundary. In [ML]
the Rohlin invariant is expressed as a linear combination of n-invariants of Dirac
operators twisted with certain tensor powers of the complexified tangent bundle.

e the Eells-Kuiper invariant classifying 7- and 11-dimensional spheres up to diffeo-
morphism (see [EK]). In [Don] the Eells-Kuiper invariant of a stably parallelizable
Spin-boundary is shown to be a linear combination of the n-invariants of the Dirac
operator and the signature operator for a metric which is induced by an immer-
sion in Euclidean space such that the induced connection on the normal bundle is
trivial. Such metrics exist for stably parallelizable manifolds.

e the relative index on cylinders of Gromov-Lawson (|[GL2]) which is related to the
diffeomorphism invariants of Kreck and Stolz as we will describe in more detail
now.
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There is the following diffeomorphism classification for a certain type of 7-dimensional
simply-connected manifolds in [KS1] and [KS2], Theorem 3.1.

THEOREM 1. Let M and N be 7-dimensional simply-connected simultaneously Spin- or
non-Spin-manifolds with H*(-;7Z) = 7, generated by u, say, and H*(-;Z) = Z/n gener-
ated by u?. Then M is diffeomorphic to N if and only if s,(M) = s.(N) for x =0, u, 2u.

For a generalization of this theorem to the case of arbitrary finitely generated free
H?(M;Z), see [Ber]. The invariant s, is a generalization of the Eells-Kuiper invariant.
The diffeomorphism invariants s, are reductions modulo Z of real valued invariants of
twisted Spin®-Dirac structures defined as follows: Consider Spin‘-manifolds M of odd
dimension n = 2k — 1 with Spin‘-structure aj; and a unitary vector bundle ( of rank
r < k over M. Define rational numbers a; by

. /(2121 — 1))  if k=0mod 2,
"7 o if k =1 mod 2.

For even k the rational number a; is minus the quotient of the coefficients of py /o in A
and L, so that ch(¢)e®/2A(p(M)) + razL(p(M)) does not involve pyp. Assume that
(M, «, () has the following properties:

(i) (M, a, () is zero bordant in Q™" (BU(r)).

(ii) Expand ch(¢)e @2 A(p(M)) +ray L(p(M)) = P(p(M), ¢(C), e1(c)) as a polynomi-
al P in the Pontrjagin classes p(M) = > p;(M) and the Chern classes ¢(¢) =
Si_oci(€) and ¢(a). If m is a monomial of degree 2k in this polynomial P
we require that m = abc with monomials a, b, ¢ of positive degree such that
a(p(M),c(C), c1(«)) and b(p(M), ¢(C), ¢1(«)) vanish rationally.

Given a Riemannian metric g on M and connections w® and w® on the canonical complex
line bundle of « and on (, define, following [KS3], a rational number:

(2) s(M,a,(,g,w* w’) = index Dy, + ray sign(W, M)
— (1) ch (G ) A(p) + ragL(p) | [W, M])
where (W, oy, Cw) is a Spin®~-BU (r)-manifold with boundary (M, «, (). The operator

Dy, is the twisted Dirac operator on W constructed with extensions of (g, w?®,w¢) to W
whose restrictions to a collar neighbourhood M x I of M = 0W in W are induced from
(g,w® w®) on M. If k is even then sign(W, M) is the signature of the quadratic form on
H*(W, M;R) given by the relative cup product. For odd k define sign(W, M) := 0.

For the evaluation of (e“(*w)/2 ch(Cw ) A(p) + rarL(p) | [W, M]) = P(p(M), ¢(C), ¢1(e)) in
(2) we have, for every monomial m = abc of degree 2k of P, to replace m(p(M), ¢((), ¢1())
by aUa(p(M),c(C), c1(a))Uc(p(M), c(C), c1(a)) to get a relative cohomology class. Here
a is any inverse image of a(p(M), ¢(¢), ¢i(a)) under the restriction map H*(W, M;R) —
HY%(W; R).

Since the index is always an integer the reduced invariant

s(M,a,¢) == s(M,a,(,g,w* w®) mod Z

does not depend on the choice of the metric ¢ nor on the choice of the connections w®
and w® on M. The invariants of the classification theorem are s, = s(M,a, () where
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¢ is the complex line bundle with first Chern class x and « is a Spin-structure with
canonical complex line bundle ¢. Since H3(M;Z) = 0 the manifolds M admit a Spin‘-
structure which is determined by its canonical complex line bundle because the manifolds
are simply-connected (see section 2, [LM]).

Applying the Atiyah-Patodi-Singer index formula for manifolds with boundary to (W, M)
(see 2.4) the s-invariant may be expressed in terms of the n-invariants of twisted Dirac
operators D . and the signature operator S on M: We denote by ¢;(w®W), ch(wW)
and p(gw) the first Chern form, the Chern character form and the Pontrjagin form of the
connections w®, w’ and the Levi-Civita connection of the metric g; on W. Then

B s(naCgwte) = [ (IR a) Aplow) + raplon)

(Di‘f} w¢) +dimker DIT
5 == — ragn(S)

= (@2 ch(Gw) A(p) + raxL(p) | [W, M])
n(DM, )+ dimker DY oo

(4) = — ran(S)

+ /Mdl (601<w°‘>/2 ch(w®)A(p(g)) + ka(p(g))) :

Here d! (em(w"‘)/? ch(w9)A(p(g)) + rakL(p(g))> is defined as follows: Every monomial m

of degree 2k of P as in condition (ii) factors as m = abc where we can choose a, b € *(M)
such that a(p(g), c((w®), c1(w?®)) = da and b(p(g), c((w®), c;(w®)) = db. Deﬁne

= (m(p(g), e((w*), e1(w™))) = @A b(p(g). c((w°), ex(w)) A e(p(g), e((w), er(w™)).

Then by Stoke’s Theorem [, d~'(m(p(g), c((w®), ¢1(w®))) does not depend on the choice
of @a. This also shows that s is well-defined by (2). Moreover (4) extends the definition
(2) to non zero bordant twisted Spin‘-manifolds (M, «, ().

For a compact manifold X of odd dimension with Spin®-structure o and carrying a
vector bundle ¢ let {g,,w? w¢)} be a smooth family of metrics and connections defined
for 7 € I = [0,1] and constant near 7 = 0 and 7 = 1. The family {g,,w®, w¢)},eo,1]
determines a metric on the cylinder Z = X x I and a connection for the Spin‘-structure
induced from X and a connection on the pull-back of ¢ to Z. The index of the twisted
Spin°-Dirac operator Dz on Z only depends on the values of (g,,w?,w¢) for 7 = 0 and
7 = 1. Following Gromov-Lawson ([GL1]) it therefore makes sense to define

i((go, wg, wg), (91, wf‘,wf)) := index D7} .
If (M, «, C) satisfies (ii) we can use (2) to get
i((goawgawg)a(ghw?:wg)) = ((M o C gOJWOJ g)U (Ma aagaglawilaw%))
s(M, ¢, go, w5 w5)) + 5(=(M, 0, ¢, g1, i, i)
= s(M, o, C. g0, w5, w5)) = s(M, 0, ¢, g1, wf i)
— dim ker DM oo

Wy Wy
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because s is additive under disjoint union and the n-invariant and the integral in (4) alter

their signs if the orientation is reversed whereas dimker D™ . remains unchanged.
Wi Wy

For a twisted Spin“-manifold (X, a, ) let ST(X, a, ¢) be the space of all triples (g, w®, w°)
for which Hitchin-Lichnerowicz’s estimate of Theorem 2.2.6 holds. If the family
{gr,w¥ w)}repa stays in ST(X, @, () then the twisted Spin®-Dirac structure on the
cylinder also satisfies Hitchin-Lichnerowicz’s estimate and we have index D} = 0 and
also dimker D* =0 for i =0,1. Thus (see [KS3]):

X W
s

THEOREM 5. For a manifold (M, «, () satisfying (ii) the real valued function

1
S(Maa;C7g:waaw§) = _577(Di\;/[0¢,w€)_rak77(5)

n /M a-! (emwa)/? ch(w$)A(p(g)) + ka(p(g)))

is constant on the path components of the space ST (M, a, () of all triples (g, w®, w®) for
which the Hitchin-Lichnerowicz estimate of Theorem 2.2.6 holds.

In the special case of untwisted Spin-manifolds we get that s(g) := s(g,w® w®) € R,
where w® and w¢ are trivial connections, is constant on the path components of S*, the
space of metrics with positive scalar curvature. In [KS3] this fact is used to prove that
on some Wallach spaces (see section 8) the space of metrics of positive sectional curvature
is not connected.

For a Riemannian manifold M with a free isometric and geodesic action of the circle
Stlet (g, w® wt) € ST(M,a,() be a strictly equivariant twisted Spin°-Dirac structure.
By Theorem 4.2.1 the index of the Dirac operator of an extension of (g, w®, w¢) over the
associated disc bundle vanishes. By (2) the s-invariant is therefore determined by the
characteristic classes of a zero bordism for (M, «, (). With regard to the formulae (3) and
(4) for the s-invariant Theorem 4.1.1 calculates the defect of s from being asymptotically
under canonical variation a spectral invariant. For example the limit of sq(g) for g €
ST (M) on an equivariantly parallelizable S'-manifold M is determined by the limits of
n-invariants because the quotient manifold is then also parallelizable and it is immediate
from Theorem 4.1.1 that the integral in 4 vanishes.

It is a pleasure for me to thank Prof. Dr. Matthias Kreck for his encouraging and stim-
ulating advice during my work on this thesis and also for generously sharing his insight
into mathematics. I am also indebted to Rainer Jung who has helped me a lot with the
computer calculation in section 8 and to him and Stephan Klaus for proof-reading the
present thesis. Moreover I owe much to numerous fruitful discussions with Dr. Frank
Bermbach, Anand Dessai, Prof. Dr. Wolfgang Liick and Dr. Peter Teichner.

Finally I want to thank the Max-Planck Institute for Mathematics in Bonn for the op-
portunity to use the Mathematica program on their computer.
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Leitfaden

The first part of the present thesis is designed firstly to recall the basic concepts of Spin‘-
manifolds, the Chern-Weil homomorphism, the Atiyah-Patodi-Singer index formula for
Dirac operators and Riemannian submersions and secondly to provide some elementary
facts concerning Spin“-Dirac structures on disc bundles. In the second part we state
and prove formulae for the n-invariant of Dirac-operators on manifolds M carrying a
free S'-action and a strictly S'-equivariant Spin°-Dirac structure. To that end we show
that the index of twisted Dirac operators on the associated disc bundle vanishes if the
Spin‘-Dirac structure on M fulfills the Hitchin-Lichnerowicz estimate. The computation
of the adiabatic limit of the integral in the index formula applied to DFE then yields the
desired formulae for the n-invariant. The third part presents a recipe to compute the
n-invariant of a compact normal homogeneous Riemannian manifold admitting a non-
trivial homogeneous action of the circle. As an example the n-invariant on the Wallach
spaces is given for the normal metric induced from the Cartan-Killing form on SU(3).
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Basic Concepts

2. Preliminaries & Notation

Throughout this thesis we deal with smooth oriented compact manifolds which we usually
assume connected and smooth maps between them. A smooth map f: X — Y has the
differential df : TX — TY . The set of smooth real-valued functions on X will be written
as C'*°X. The set of sections of a fibre bundle 7 : £ — X over a manifold X is denoted
by 'm = TE. If 7 : E — X is an oriented metric vector bundle we will also write
7 : Pso(E) = Pso(m) — X for its oriented orthonormal frame bundle. The k-forms on
X with values in a vector bundle E over X are QF(X; E) = T Hom(A*T X, E). By d we
also denote the exterior derivative d : Q%(X; E) — Q¥ 1(X; E) for a trivialized vector
bundle F.

2.1. Principal Fibre Bundles and Connections.

Let m : P — B be a principal G-fibre bundle, where G is a Lie group acting from the
right on P. The Lie group G acts on its Lie algebra g via the adjoint representation.
The tangent bundle along the fibres of P is isomorphic to kerdm = P X g so we can
identify Q*(P;g) := Q*(P; P x g) = Q*(P; kerdr). A 1-form w € Q'(P;g) is a (principal)
connection on 7 if it is vertical (i.e. w(v) = v if dw(v) = 0 for v € TP ) and G-equivariant
(i.e. w(vg) = Adyw(v) for all g € G and v € TP). A connection w can also be viewed as
a vertical projection V : T'P — ker dmw. The horizontal projection complementary to V is
H =1—V and we define Q = H*dw. We use the definition of [KIN1]| for d. Especially we
have dw(z,y) = 1/2(zw(y) —yw(z) —w([x,y])). This 2-form Q € Q*(P;g) = Q*(P; P x g)
is horizontal and equivariant, hence it is pulled back via 7 from a form Q € Q?(B; P x¢g)
called the (principal) curvature of w.

For the linear Lie groups over FF' = R or C there is an equivalent notion of covariant
derivative on an F-vector bundle ( : £ — X over a manifold X: This is an F-linear map

V:TEQITX — TFE
sxr +——> Vs

satisfying
Viz9s = f(gVaus + x(g)s)

for all vector fields x on X, sections s of £ and smooth funcions f, g on X.
The curvature tensor R € Q?(X;End(E)) of V is defined as

Ryy = Vigy — [Va. V.

A straightforward calculation shows that R, ,s is C°°X-linear in z, y and s, so we really
get a tensor field.
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Let W be a representation of G. If ( : E = P xg W — X is associated to the principal
G-fibre bundle 7 then w induces a covariant derivative V on ( by V,s = Zs where T is
the horizontal lift of x € TX to T'P with respect to w and the section s of ( is considered
as a G-equivariant function P — W. If W is faithful then w is determined by V. The
representation induces a map P Xg g — End(FE). The curvature tensor R of V and the
image () of the principal curvature form under this map are related by

R = -2Q.

The metric g on a Riemannian manifold X will sometimes be written as g(z,y) = (z | y).
The Levi-Civita connection (covariant derivative) V on X is the unique metric torsion
free connection on the tangent bundle of a Riemannian manifold and is given by the
formula
(2.1.1) 2Vay | 2) = x(y|2) +yle|z) -2z |y)

+ ([, yl | 2) = ([z. 2] [ y) = ([y, 2] | 2)
for arbitrary vector fields x, y and z on X.
Recall the notions of equivariant bundles and connections over a manifold X carrying an
action of a group H: An equivariant bundle over X is a fibre bundle 7 : P — X together
with an action of H on its total space P covering the action on X. A principal G-fibre
bundle 7 : P — X is called equivariant if this action of H on P commutes with the
action of G.
An equivariant connection w € Q'(P;g) on an H-equivariant principal G-fibre bundle
will be called strictly equivariant if the orbits of H are horizontal with respect to w. As
an example consider a Riemannian H-manifold X. If the action of H is geodesic i.e. the
orbits of H are totally geodesic in X then the Levi-Civita connection on X is strictly
equivariant.
Fixing a homomorphism p : K — G of Lie groups a K-structure for 7 is a principal
K-fibre bundle x : Q — X together with an isomorphism Q xx G —= P of principal
G-bundles or equivalently a K-equivariant map Q — P over X. An H-equivariant
K-structure is a K-structure together with an H-action on () commuting with the action
of K and such that « is H-equivariant. A (H-equivariant, strictly H-equivariant) K-
Dirac structure for a principal fibre bundle 7 with connection w™ is a K-structure x for
7 together with a (H-equivariant, strictly H-equivariant) connection wX on y for which
dp owX = w™ oda.
We will confine our discussion to the case of free H-actions on X. Then equivariant (prin-
cipal) bundles and strictly equivariant connections over X are induced from (principal)
bundles and connections over the quotient X/H. This correspondence is biunique.
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2.2. Dirac Operators.
References for this section are [LM], [ABS], [AS3].

2.2.1. Spin®-Dirac structures.

Let X be a Riemannian manifold and ( a real oriented metric vector bundle over X of rank

n with oriented orthonormal frame bundle ¢ : Pso(¢) — X. Let Spin(n) "% SO(n) be
the non-trivial double covering and define Spin®(n) = Spin(n) xz,2U(1). In the notation
of the previous section consider the representation

K = Spin‘(n) =% SO(n) = G

induced by pgpin. For n > 2, p is the non-trivial principal U(1)-bundle over SO(n). Thus
a Spin®-structure on ( is a principal U(1)-bundle

Psyine (C) = Psol(¢),

whose restriction to any fibre of Pg(() is the canonical principal U(1)-bundle pgpinc. For
¢ : Pso(X) = X we call a: Pgyine(X) = Pso(X) a Spin-structure on X.
The canonical U(1)-bundle of « is

f(a) . PU(l)(a) = PSpinC (C)/Spln(n) = PSme (C) ><Spmc(n) U(l) — X.

Thus we have a commutativ diagram

pSO(X) A PSO(X) ><XPU(l)(Oé) & PSpinC(X)

J J

X w PU(l) (a)

where o is a twofold covering and o = € o o' and the square is a pull back diagram.
The reduction modulo 2 of the first Chern class ¢;(a) := ¢;(£(a)) € H*(X,Z) is the
second Stiefel-Whitney class wo(¢) and Spin‘-structures on ( exist if wy(() is the reduc-
tion modulo 2 of an integral class ¢ € H?(X,Z). The group H*(X,Z) = Vectt(X) =
Pring)(X) of isomorphism classes of principal U(1)-bundles over X acts transitively
and effectively on the set Spin°({) of isomorphism classes of Spin®-structures on (. A
principal U(1)-bundle p over X maps « to (*u ® a. The canonical U(1)-bundle £(«) is
mapped to £(C*u® a) = p* @ {(a).

A Spin®-Dirac structure (a,w®) on X is a Spin®-structure o together with a connection on
Psyinc(X) — X which is compatible with the Levi-Civita connection. Such connections
correspond biuniquely to arbitrary connections w® on (). This correspondence is given
as follows:

Denoting the principal Levi-Civita connection on PsoX by wx we get a connection p =
Jla*wx + ¢*w®) on Pgpyine (X)) where ¢ is the quotient map Pspinc(C) — Pspinc(C)/Spin(n)
and j is the isomorphism of Lie algebras j : so(n) & u(1) = spin®(n).

If o is an H-equivariant Spin‘-structure on the Riemannian H-manifold X then {(«) is
an H-equivariant bundle. Furthermore if H is connected the action of H on Pgye(X)
is determined by the H-action on Pyq)(a). Equivariant Spin°-Dirac structures X corre-
spond to equivariant connections on &(«). If the action of H on X is geodesic then strictly
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equivariant Spin-Dirac structures on X match with strictly equivariant connections on

¢(a).
On Y = 0X the boundary Spin®-structure da is the restriction of a to PsgY — Pgo X.

2.2.2. Dirac operators.

Let 3 be a complex module for the Clifford algebra Cl(n) of the vector space R with
the negative definite quadratic form Q(z) = —Y_ z?. A module for the Clifford algebra
is always assumed to have a Hermitian scalar product such that multiplication by unit
vectors of R" C Cl(n) is unitary. Consider a Riemannian Spin°-Dirac manifold X of
dimension n with Spin°-structure o and a connection w® on &(«). Then we have an
associated spinor bundle S = Pgpine(X) X gpinc(n) £ with a covariant derivative V9 deter-
mined by w® and the Levi-Civita connection on X. Given a Hermitian vector bundle ¢
over X with a unitary covariant derivative V¢ the tensor product connection on S ® ( is
V =19V +V®1. We then define the Dirac operator twisted with ¢ as the composition

D :T(S®() L T(Se(eT X)L T(S®(),

where ¢l is the Clifford multiplication of 7*X C CI(X) on S ® ¢ induced from the action
of the Clifford-bundle CI(T*X) on S.

Every complex module for the Clifford algebra Cl(n) of finite dimension over C decom-
poses in irreducible modules. So it suffices to consider spinor bundles Pgpine (X)) X gpinc(n) 2
where ¥ is an irreducible module for Cl(n).

In even dimensions n = 2k there is a unique irreducible C1(2k)-module ;. When
viewed as a Spin‘(2k)-representation ¥ splits in two different irreducible representations
Yor = X, @ X, which give rise to a splitting S = ST @ S~ of the corresponding spinor

bundle. With respect to this splitting D has the form (51 DO_> where

D* . IS* —sTS¥,

These operators twisted with a coefficient bundle (¢, V¢) are denoted by D, Dci.

In odd dimensions n = 2k — 1 the modules £3, and X, obtained from the irreducible
module Yy, for Cl(2k) are the irreducible modules for Cl(2k — 1) and yield equivalent
irreducible representations of Spin®(2k — 1): Let v be a unit vector in R?* orthogonal to
R*~1. The Clifford action of u € R*~! C Cl(2k — 1) on s € &, is given by s — —vus.
The representations of Spin(2k—1) are isomorphic because v commutes with Spin(2k—1).
Let X be a 2k-dimensional Spin‘-manifold with boundary Y. If Sx = ST @& S~ is the
spinor bundle on X then the spinor bundle Sy on the boundary Y is isomorphic to
S*|y. The Clifford multiplication with « € TY C TX under this isomorphism is given
by u-s = —vus for s € ST|y where v is the inward normal vector field in TX|y. The
tangential Dirac operator D (see 2.4) is the Dirac operator on ST |y with this Clifford
multiplication.

2.2.3. Lichnerowicz’s vanishing theorem.

Let € Q*(X;u(S®()) be a 2-form on X with values in the skew-Hermitian endomor-
phisms of S®(. Choose an orthonormal basis {e;, ... ,e,} of T, X and define a Hermitian
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endomorphism £(u) of S ® ¢ as

E) o ®2) = 5 3 ules,en)(esero © )

for 0 € S,, € € (,. Also define ||u|| € C>°(X) by
5)

pl[(z) = —min{(E(u)s | 5) [ s € (S @ C)as [|s]] = 1}
This is minus the smallest eigenvalue of (). For 2-forms pu,v € Q*(X;u(S ® ¢)) we
have |[uf| + [[v]| = ||+ v]].
Let Q¢ and Q© be the principal curvature forms of V¢ and w® respectively. Note that
Q* € Q*(X;iR) induces the skew-Hermitian endomorphism s — £Q%(z,y)s on S, so that

' 1

EQ*®1+1@Q) (c®e) = % Z iQo‘(ej, er)ejero @ & + ejero @ (e, ex)e
j<k

As an example look at the untwisted Spin‘-case (take the trivial complex line bundle for

¢ = X with its trivial connection). Hitchin ([Hit]) has computed the function ||Q%|| :=

Q2> ® 1|| as follows: Choose an orthonormal basis {e1,...,e,} of T X such that the

curvature form Q® at the point x € X has the form

Q¢ = Z )\iegi_l A €9;.

1<i<[n/2]

Then
(22.4) ll@ =g 3 N

1<i<[n/2)

For the Dirac Laplacian DZ we have Bochner’s formula
1
D} :V*V+Zs+€(9a®1+1®94).

On a closed manifold X the operator V*V is nonnegative since for sections s of S ® ( we
have that

(2.2.5) /X<v*vs ) :/X<Vs 1Vs) > 0.

The endomorphism 1s + £(Q* ® 1+ 1 ® Q) is positive if s —4/[Q*® 1 + 1 ® Q]| is
positive. In this case the kernel of D, = DZ’ @® D; must be trivial and index DZ’ =
dim ker Dzr —dimker D = 0.

In [APS2], before Theorem (3.9), the same argument is shown to work on the compact
manifold X with boundary Y if we impose the Atiyah-Patodi-Singer boundary conditions
(2.4.1) on the sections s: If the kernel of the tangential operator DY (see 2.4) is trivial
then the index of D} equals the index of the Dirac-operator D/ on L?-sections of the

extension of S ® ¢ to the elongation X = X Uy YV x [0, 00[ of X. By [LM], Chapter II,
Proposition 8.1, the difference between the two integrands in (2.2.5) is the divergence of
a vector field w: (Vs | Vs) — (V*Vs | s) = divw. At a point z € X this vector field is
given by w = 3, €;(V,,s | s) in terms of a local orthonormal framing {e;} of TX around
r with (Ve;)(x) = 0. If s € ker D, then the boundary conditions (2.4.1) imply that s
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and its covariant derivative decrease exponentially on the cylinder Y x [0, oc[. Therefore
the vector field w is exponentially small at infinity. Now Green’s formula shows that
Jx(V'Vs | s) = [((Vs|Vs) > 0.

Thus the following vanishing theorem of Hitchin ([Hit]), Lichnerowicz ([Li]) holds for
Dirac operators on closed manifolds X as well as for Dirac operators on compact mani-
folds with boundary and acting on sections fulfilling the Atiyah-Patodi-Singer boundary
conditions (2.4.1):

THEOREM 2.2.6. [Hit], [Li] Let (X, g, o, w®) be a Spin®-Dirac manifold with metric g of
scalar curvature s, Spin®-structure o and a connection w® on the canonical U(1)-bundle
£(a). Let D¢ be the Dirac operator on (X, g,o,w®) twisted with o Hermitian bundle

(€. V). If
%s— 12°® 1+ 1®Q°|
1s positive somewhere and nonnegative everywhere on X then
index D} = 0.

On closed manifolds we actually have ker D, = 0.

2.3. The Chern-Weil Homomorphism.

A Lie group G acts on the R- or C-dual of the k-fold tensor product of its Lie algebra
g via the adjoint representation. We also have an action of the symmetric group on k
elements by permuting the factors. An invariant polynomial p of degree k on g is a k-form
pE(g®...®¢g)" on g which is invariant under these actions.

—_—

For a prinkcipal G-bundle g : P — X with connection form w we can substitute the cur-
vature form  into an invariant polynomial p of degree k to get a form p(Q) € Q%*(X;R)
or in Q*(X; C).

Examples:

(1) For an SO(n)-principal bundle P the Pontrjagin forms pj(w) € Q%(X;R) are

defined by
- Q
> 2k —det (2 — — ).
2 pr(w)z et {2~ o

The Pontrjagin forms of the Levi-Civita connection on the tangent bundle of a
Riemannian manifold X with metric g will be denoted by p(g).
(2) For a U(n)-principal bundle P the Chern forms ¢;(w) € Q%(X;R) are given by

& Q
ch(w):rn_k = det <:1: - 2—m> .

k=1

Especially we have
() =t 12
c1(w) = trace — .
! 27
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The Chern character form ch(w) € Q**(X;R) is

2
ch(w) = trace exp (;—) :

™

2.4. The Atiyah-Patodi-Singer Index Theorem for Manifolds with Bound-
ary.

Let W be a compact Riemannian manifold with boundary M and E be a vector bundle
over W. Assume that some collar neighbourhood of M is isometric to the product
M x I. with metric gy @ dt*> where I. = [0,¢] for some £ > 0, 9W = M x {0} and 2
is the inward normal vector field on M x I.. We consider elliptic first order differential
operators D on E which in this collar neighbourhood have the form D = O'(% + DM) for
a bundle isomorphism o of E and a self-adjoint differential operator D on E|,; called
the tangential operator to D. We consider the action of D on sections s satisfying the
boundary condition

(2.4.1) P(s]y) = 0,

where P is the projection onto the span of all eigenvectors of DM with non-negative
eigenvalues.
Define h(DM) = dimker D and let n(D",s) be the meromorphic extension of the
function
Y N sgn(y)

AESpecDM
to the complex plane. The n-invariant of DM is n(DM) = n(DM,0).
By A and L we denote the multiplicative sequences corresponding to the characteristic
power series z/(2sinh(z/2)) and z/tanh(x) respectively.

THEOREM 2.4.2. [APS1] Let (W,g,a,w) be an even-dimensional Riemannian
Spin-manifold W with boundary M, metric g and a Spin°-Dirac structure (o, w). Let
(¢, VO) be a twisting bundle. Assume that g is isometric to the product gy ® dt* near M
and that the restrictions of w and V¢ to some collar neighbourhood M x I, are induced
from the connections wyr and Vg\/[ over M.

Consider the Spin‘-Dirac operator D; on W, twisted with ( and acting on sections s of
S ® ¢ satisfying the boundary condition (2.4.1). Let Dé” be the Spin®-Dirac operator on
(M, gar, Ocv, way) twisted with (¢, V)|

Then

M M
Note: This formula is not stated littarally in [APS1] but it follows from the discussion
before formula (6.13) in [ABP]: The point is that the integrand is computed locally.
But locally a Spin‘-Dirac structure (o, w®) is the same as a Spin-structure twisted with
a complex line bundle (x,wX) such that x ® x = &(a) and wX @ wX = w®. So ch(wX) =
e@?)/2 as forms.
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The signature operator on a (4k — 1)-dimensional Riemannian manifold (M, gps) is the
operator S(gy) = @,5, : Q**(M) — Q*(M) constructed out of the Hodge *-operator
and the exterior derivative d (see [AS3]):

Sp: QP(M) — Q¥P72(M) @ Q" (M)
X — (=) (xd — dx)x.

THEOREM 2.4.3. [APS1] Let (W, g) be a Riemannian manifold of dimension 4k with
boundary (M, gyr). The signature of (W, M) is

sign(W, M) / L(p(g)) — 1(S(gnr)).

w

2.5. Riemannian Submersions.

The ensuing formulae can be found in [Be], [O’N]|. Let 7 : (M,g9) — (B,gg) be a
Riemannian submersion with totally geodesic fibres (F, gr). Denote by V' = ker dr C TM
and H = (kerdr)t C TM the vertical and horizontal distributions of 7 and by V, H
the corresponding orthogonal projections. Then dr|y is isometric and drV,v = 0 for all
vertical vector fields v and v.

Let V, R, V', RY and V?, R® be the Levi-Civita connections and curvature tensors on
(M, g), (F,gr) and (B, gg). Note that by a theorem of Hermann [Her| all fibres of a
Riemannian submersion with totally geodesic fibres are isometric.

We will always denote horizontal tangent vectors of M by a, b, ¢, ..., h and vertical vectors
by r, s, t, u, v, w.

2.5.1. O’Neill’s formulae.
For vector fields =,y € I'T'M define the A-tensor of O’Neill by

If a,b are horizontal vector fields, then formula (2.1.1) shows that
1
Agb = §V[a, b).

For a Riemannian submersion the Riemannian curvature tensor of the total space M is
given by O’Neill’s formulae which for submersions with totally geodesic fibres simplify to

(Rapclh) = (Rgyclh) — 2(AablAch) + (Auh|Ape) — (Aac|Aph),
(Rapclu) = ((VeA)ablu),

(Ropulv) = ((VyA)ublv) — (VyA)ub|u) + (Agu|Apw) — (A Apu),
(Roublv) = ((Vud)ab|v) + (AqulAp),

(Ruowla) = 0,

(Ruowit)y = (R, ,wlt).
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2.5.2. The Canonical Variation.
The canonical variation of a metric ¢ on M is the family of metrics on M given by
g =Hg+1Vyg
for 7 € RY. Let (- | )™ = ¢” and V", R", A™ be the covariant derivative, Riemannian
curvature tensor and A-tensor for the metric g”. Then

ATb = Agb,
Alu = TAuu,
(VIA)bu)™ = 7((V.A)ablu),
(ViAT)ablv)" = 7((Vud)ablv) + (7 = 7°) ((Aau|Ap) — (Aev|Apu)).

The dependence of R™ on 7 is given by (see [Be])

(R ,clh)™ = (RZ,c|h) + 7({Aah|Apc) — (Aac|Ayh) — 2(A.bAch)),

(Repclu)™ = 7((VeA)ablu),

(Rgpulv)” = 7(((VuA)ablv) — ((V,A)ablu)),
+(27 — 7%) ((Aqu| Ayv) — (Agv|Ayu)),

(Reublo)™ = ((VuA)ab|o)T + (1 = ) ((Agu|Apv) — (Aqv]Apu)),
+72(Aqu| Apv),

(R, ,wla)” =0,

(Riwlt)y” = 7(Ry, wit)’.

For a function f: R — R we shall write f(7) = O(7*) for 7 — 0 if lim, o f(7)/7" exists
and is finite. The asymptotic expansion of R” for 7 — 0 is then

(Ropelh)™ = (Riyclh) +O(7),
(Repclu)” = O(7),

(Ropulo)” = O(r),

(Reublv)” = O(r),

(R,,wla)" =0,

(RLwlt)” = (R, wls)" =0(r).

For the scalar curvature we have
1
2
Sgr = ;sF + sp — 7||A]|%,

where the function ||A|| on M is defined at the point p € M by

[1A[*() = D _(Anhj | Anhs)
i,J
for an orthonormal basis {hy,...h,} of H,.

On the bundle Tr M =V along the fibres of 7 there is a connection
(2.5.3) \AGERVAVAN
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We have suppressed the rescaling factor 7 in the notation here because it follows imme-
diately from (2.1.1) that VY does not depend on 7.
Its curvature tensor RY is given by
(Rg’yu [v) = (Vigu|v) = (Vo VVyu | v) +(V,VV,u | v)
= (Ryyu|v) + (V,HVyu|v) —(V,HV,u | v).

By definition Ayju = HV,u. Using the formulae for the canonical variation of A we
therefore can compute

(2.5.4) (ViHVu | v)" = o(HVyu|v)" = (HVyu| V)"
= (Aju | Ajv)"
- o)

to obtain

RY = VR + O(r).

At a point p € M choose a basis B = {hy,... ,hp,u1,... ,uy} of T,M consisting of
horizontal vectors {hy, ..., h,} and vertical vectors {uy,... ,u,}. If B is an orthonormal
basis with respect to ¢ = ¢' the asymptotic behaviour for 7 — 0 of a matrix representation
of the curvature tensor is:

(RTu; | ug)™ /T (RThy | ug)7/T
(RTui | hl>T <R7hk | hl>T

R =

50 RY + O(7) O(1)
O(1) RB +0(7)

and the limit of R7 is

(2.5.5) lim R™ =
7—0 0 ﬂ'*RB

3. Disc Bundles

In this section (M, gas, apr, wpr) will always be a Riemannian manifold of dimension
n + 1 with metric ¢y, carrying a free isometric and geodesic action of the circle S' and
an equivariant Spin°-Dirac structure (aas,wyr). Then the orbit space B = M/S! is a
manifold and there is a metric gg on B such that the quotient map 7 : M — B becomes
a principal S'-bundle and a Riemannian submersion with totally geodesic fibres. By
the theorem of Hermann there is a positive real number p such that all fibres of 7 are
isometric to S} < C, a circle of radius p in C = R* with its standard metric. We
construct extensions of the metric and the Spin®-Dirac structure on M to the disc bundle
mp: DE = M xg1 D — B of the associated complex line bundle ¢ : E = M x4 C — B
to . The disc D C C of radius § > p will be endowed with a metric such that 0D is
isometric to S).
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3.1. Associated Bundles.

A tool for constructing Riemannian submersions with totally geodesic fibres is the fol-
lowing

THEOREM 3.1.1. [Vi], see also [Be| Let 7 : P — B be a principal G-bundle, G a Lie
group, with connection w over a Riemannian manifold (B, gg). Also let (F,gr) be a
Riemannian G-manifold (i.e. G acts isometrically for gr). On the total space of the
associated fibre bundle mgp : E := P Xg F' — B there is then a unique metric gg such
that:

(1) the fibres of m are totally geodesic submanifolds of (E, gg) and isometric to (F, gr),
(2) mer : (E,gr) — (B, gg) is a Riemannian submersion and
(3) the horizontal distribution of TE is associated to w.

3.2. Some Metrics on Disc Bundles.

Let w™ be the connection on © whose horizontal distribution is the horizontal distribution
of the Riemannian submersion 7, i.e. (kerdm)t = kerw™ On C\ {0} consider the
vectorfields @ and v given by polar coordinates:

ap(re") = 505(7”6”)

. P .
v(ret) = = g(re?)

for functions ¢ on C\ {0}, r € R* and ¢ € R. Let the metric gc on C\ {0} expressed in
the basis {@, v} be given by the matrix

f(r)* 0
0 1

for some function

f iRy — [0, p]
which extends to an odd smooth function f on R with f'(0) = 1 to ensure that the
metric gc extends from C\ {0} to the whole of C. We also fix some real number v with
0 < v < § and require that f(r) = pif r > . Then near its boundary S; the disc D C C
with radius 6 equipped with this metric becomes isometric to a cylinder S* x [v, d].
Take w™ and this metric on C to construct the metric gg on E by the theorem of [Vi].
The horizontal distribution associated to w™ is then the horizontal distribution of the
Riemannian submersion m¢ and we have isometric embeddings into E of B as the zero
section and of the canonical variation of M by

(M,gf(7)2/ﬂ2) — M, = {3? cE ‘ d(x,B) :T} — F,

where d is the distance function on (E, gg). Especially (M, g) is embedded as the bound-
ary of the associated disc bundle DE = {z € E | d(z, B) < d}.
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Associated to the vector fields @, u = a/||@|| and v are vertical vectorfields on DE \ B
which we denote by the same letters. Using that v commutes with all basic vectorfields
of m we get

Voo = Vyu=0,

fl
V.o = =u,
f
fl
Viau = —=v,
f
V.v = 0 for every horizontal vector field a.

At a point with distance 7 from the zero section in E the scalar curvature of the fibre
F=Cis

()

Sp = —2 .

G
In order to compute the function ||A|| on E we fix a point e € F with 7w(e) = b € B,
d(e, B) = 7 and choose an orthonormal basis {hy,... , h,} for T, B for some b € B.

For arbitrary vectors x,y € T,B, their horizontal lifts z,57 € T,E, and extensions to
horizontal vector fields also denoted by Z, 7, the A-tensor is given by A;y = %V[:E, 7). We
have that ([Z,7] | v) = 0, since the vectorfields Z, § are vectorfields on the submanifold

M, which is perpendicular to the vectorfield v. Hence
_ L, I, s N
Ay = {9 [ wyu=——(Q(z,y)a [ u)u
= Q" (x,y)f(T)u,

where )7 is the curvature form of w”. By definition,

AP = (A5 | Az hy) =Y =7 (b, hy)* (7).
i

]
Since f(7) < pif e € DE we have
2
_
sat, = s = LEL 11 > s = 4P = s, = s

and the scalar curvature of DF is estimated by
"

(3.2.1) Spr > SF+SM=—27+SM.

3.3. Spin“-Dirac Structures.

We will consider two Spin®-Dirac sructures on a fixed equivariant Spin®-structure oy, on
M. Such Spin‘-structures M are obtained from Spin‘-structures on B and vice versa. A
Spin®-structure ap : Pgyine(B) — Pso(B) on B induces the Spin®-structure

Pspine (M) := 7 (Pspinc (B) X spinc(n) Spin‘(n + 1))

|

Pso(M) = 7*(Pso(B) xsom) SO(n +1))
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on M. The canonical bundle of ay; is £(aps) = 7*€(ap). If wys is a strictly equivariant
connection on &(ayy) then wy, = m*wp for some connection wp on &(ap).

The equivariant Spin‘-structure o, extends to a Spin®-structure apg on the disc bundle
DFE which is induced from the Spin®-structure ap and the canonical Spin®-structure
O ¢ Pspine (1) = M Xy(1y Spin‘(2) — M = Pso(m) of the principal S*-bundle 7:

Pspinc(DE) = 7 (Pspinc (B) X B Pspinc(T)) X spine (n)x spinc(2) SpIn‘(n + 2)

JQDE

pso(DE) = ﬂ*(Pso(B) X B Pgo(ﬂ')) XSO(n)XSO(?) SO(n+ 2)

Its canonical bundle is {(apg) = 75, (&(ap) @ 7). The canonical isomorphism to 75, &(ap)
outside the zero section is not equivariant. Putting wpr = 7)) (wp ® w™) we get an
equivariant Spin‘-Dirac structure (apg,wpgr) on DE. Restrictions to M of such Spin‘-
Dirac structures will be referred to as boundary Spin“-structures. They are equivariant
but not strictly equivariant.

In order to extend the strictly equivariant Spin®-Dirac structure (apr,wy = 7*wp) from
M over DE we pick a smooth function

w : Rg— — [07 1]
such that for the same real number 7 as in section 3.2 and some « €]0, | we have
(1) ¢(r)=1if 7 € [0, 0],
(2) (1) =0if 7 > .
Then the function ¢ (d(-, B)) which we will also denote by ¢ is smooth on DE.
By w” we denote the trivial connection on 7rj‘37r|DE\B induced from its canonical trivialisa-

tion. The Spin®-Dirac structures (ayr, m*wp) and (aps, T*wp @w®) on M are equivariantly
isomorphic and we can extend (o, T*wp ® wP) to all of DE by

wpg = Thwp @ (Yrhw™ + (1 — )W),
For the curvature QQpgp = dwpg of wpg we therefore get
(3.3.1) Qpp =7p0p @1+ 1® (dy(rhHw™ — w°) + Q7).

Let {du,dv} and {du,dv} be the framings of the vertical distribution dual to {u,v} and
{u,v} respectively. In terms of the metric these 1-forms are given by du = (u | ),
dv=(v|-)and du=(a|-y/{a|a)y=1i{u]|-)/f. Then

mhw™ — W = idi = %du € Q' (DE\ B;iR)

and the form dy(mHw® — wP) is given by

(3.3.2) dip(mhw® — w°) = —w?lidu A dv
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3.4. Spin-Structures.

Recall that a Spin-structure ax : Pgyin(X) — Pso(X) on a manifold X of dimension n
canonically induces a Spin“-Dirac structure (a$,w) by taking the associated bundle

Oz% : ngmc (X) = ngm(X) XSpm(n) Spmc(n) = ngm(X) Xz/g U(l) — Pso(X)
for a5 and the trivial connection w® on
f(a%) = Pgpin(X) X spin(n) Spin®(n)/Spin(n) = X x U(1)

for w. Conversely given a Spin®-Dirac structure (ay,w) with trivialized canonical bundle
X x 8! and trivial conection w we can construct a Spin-structure oS, as restriction of the
principal Spin-bundle Pgyine(X) = Pyy(a%) = X x S' to X = X x {1}.

If M is a Spin-manifold then wo(M) = 0 and from the exactness of the Gysin sequence
of m we see that wy(B) = 0 or we(B) = we(m) = ¢;(7) mod 2.

The Spin-structure aj; on M is equivariant if and only if B is a Spin-manifold with Spin-
structure ag and aj; = 7*ap. Such a Spin-structure does not extend to a Spin-structure
on the associated disc bundle DE. The induced Spin‘-Dirac structure (o, w?) is strictly
equivariant.

If avps is not equivariant then there is a Spin-structure apr on DE with oy, = dapr: aar
induces a Spin-structure on 7* Pso(B) which gives an equivariant Spin-structure of; if
we endow £(af,) : M x S — M with the diagonal action of S* on M x S'. The canonical
U(1)-bundle of the quotient Spin‘-structure ag on B of af; is £(ap) = £(af,)/S! = —n
i.e. m with the U(1)-action reversed. Therfore ap induces a Spin‘-structure apg on DE
with £(apg) = 7 ® (=) trivial. The desired Spin-structure is a% ;. Given a connection
w™ on m we also get an induced Spin®-Dirac structure (ap,wp) on B with {(ap) = —7
and connection wg = —w”. In this case DE is a Spin-manifold and we must have
wy(B) = ¢1(m) mod 2.

Thus the set Spin(M) of isomorphism classes of Spin-structures on M is given by

w(B)  ws(n) Spin(M)
0 0 7*Spin(B) U dSpin(DFE)
0 #0 w*Spin(B)

we(B) = we(m) #0 dSpin(DE)

This can also be seen from the Gysin sequence of 7 because H'(X;Z/2) acts transi-
tively and effectively on the set Spin(X) of isomorphism classes of Spin-structures on a
Spin-manifold X. So |H'(X;Z/2)| = |Spin(X)|. The table above follows by counting
HY(M;7Z/2) and comparing with |H*(B;Z/2)| = |H'(DE;Z/2)| in the three cases. The
sets m*Spin(B) and 0Spin(DE) are disjoint because the restrictions to a neighbourhood
of a fibre which has the form U x S! for some contractible U C B give the two different
Spin-structures of S!.



The Adiabatic Limit of n-Invariants

4. Statement of Results

For the statement of the formula for the n-invariant of S'-manifolds we will adopt the
following conventions:

(1) (M, gp) is a Riemannian manifold of odd dimension 2k + 1 with free Sl-action
and a metric gp; which is invariant under this action. Furthermore the orbits of
the S'-action are geodesic in (M, gys). Then on the orbit manifold B = M/S!
there is a (unique) metric gp such that the quotient map m becomes a Riemannian
submersion with totally geodesic fibres. The connection w™ on 7 is as in section
3.2 i.e. w™ is the vertical projection with respect to gy;.

(2) 7p: DE = M x g1 D?> — B is the associated disc bundle.

(3) M is identified with the boundary of DE. g¢gpg is a metric on DE such that
M x I, with the product metric gy @ dt? is isometric to a collar neighbourhood
of (DE, gpg) for some € > 0. By w” we denote the trivial connection on 7*m over
this collar-neighbourhood.

(4) gpp and g}, are the canonical variations of the metrics gpgr and gas (see section
2.5.2).

(5) e = ci(7) € H*(B;Z) is the Euler class (first Chern class) of the principal S'-
bundle 7 : M — B.

(6) Let S, be the bilinear form on H*"!(B;Z) given by

(z,y) — (zUyUe|[B])
If £ is odd then S, is symmetric and we define sign(S,) to be its signature. For
even k we set sign(S,) = 0. Note that sign(S,) is the signature of (DE, M).

(7) S(g},) is the signature operator on (M, gj,) as in section 2.4

(8) K is a multiplicative sequence with characteristic power series k (see [Hi]). The
examples we need here are

(a) K =L, k(z) = x/ tanh(z) and
(b) K = A, k(z) = =/(2sinh(z/2)).

(9) p(¢pp) is the (total) Pontrjagin form given by the Levi-Civita connection of the

metric gz on DE.

21
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4.1. The Integral in The Atiyah-Patodi-Singer Index Formula.

THEOREM 4.1.1. The limit under canonical variation of integrals of the type as in the
Atiyah-Patodi-Singer index formula is given by

lim K(p(ghe)) flei(w)) mh8 = <K(p(TB))6(k(cl(w))f(cl(n)) —1)

0 JpE c1(m)

| [B])-

where

(1) f is an arbitrary power-series in one variable starting with 1.

(2) w is a connection on Thm which extends w°. Its first Chern form is c¢i(w) €
O?(DE;R).

(3) 8 € Q*(B;R) is arbitrary.

COROLLARY 4.1.2. Under the canonical variation the n-invariant of the signature oper-
ator tends to

limn(S(g3,))) = (L(p(TB)) (tanh(lc1(7T)) - cl(lﬂ)

) [B) = sign(s.).

4.2. Dirac Operators.

From now on we additionally assume:

(1) su, sp are the scalar curvatures of gy, gp respectively.

(2) (e, war) is a strictly equivariant or a boundary Spin®-Dirac structure on M. Qy,
is the curvature form of wy,.

(3) (B,ap,wp) is the induced Spin-Dirac structure on B as in section 3.3. Q is
the curvature of wp if wy, is strictly equivariant and the curvature of wp ® w™ if
(apr, wpr) is an equivariant boundary Spin®-Dirac structure. Note that Q,; = 7.

(4) ¢ is a Hermitian vector bundle over B equipped with a Hermitian covariant deriv-
ative V¢ with curvature form Q¢. VM is the induced connection over M.

(5) VPE is a connection on the bundle 7*¢ over DE.

(6) (apr,wpr) is a Spin®-Dirac structure on DE extending (s, war) to DE. Over the
collar neighbourhood M x I, the connection VPF and the Spin®-Dirac structure
(app,wpg) are induced from VM and (s, was) by the projection M x I, — M.

(7) Dx-¢ is the Spin°-Dirac operator on (DE, apg,wpr) twisted with the coefficient
bundle (7*¢, VPE) acting on spinors over DE satisfying the Atiyah-Patodi-Singer
boundary conditions (2.4.1). The twisted Dirac operator on M is denoted by D%C'
It coincides with the tangential operator to D,-¢ by section 2.2.2.

THEOREM 4.2.1. If
su(T) > 4]|Qu @ 1+ 1@ 7°Q|(x) for allz € M
then the index of D;ZC vanishes.
Since lim,_, S(M,g7,) = SB and sp > S(M.g7,) for all 7 we therefore have:
COROLLARY 4.2.2. If
sp(b) > 4||Q® 1 +1® Q°||(b) for allb € B
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then
lim index D;'*C(g,SE) = 0.

T—0

By Theorems 4.2.1 and 4.1.1 the Atiyah-Patodi-Singer index theorem applied to the
manifold (DE, M) yields:

THEOREM 4.2.3. Define c € H*(B;Z) by

ci(m) if (o, war) is a boundary Spin®-Dirac structure

CcC =
0 if (conr, war) 48 a strictly equivariant Spin-Dirac structure
Then |
lim = (n(DY,. g5) + dimker(DX,. g7,))
X ci(m)/2 /2
= (A(B) em@B)/2 ¢y ¢ - B)) mod Z.
AB) NN S nb(e @) am) | B m

If in addition
sp(b) >4||Q®@ 1+ 1 Q|(b)
for all b € B, then

lim (DY A(B) ee1(@5)/? ch e "N |18
; - T — 1(ap _ )
liny (D (530) = (AB) e en(q) (5 = S 18
The n-invariant of the Spin-Dirac operator of a Spin-structure iy, on M is the np-invariant
of the Spin®-Dirac operator of the associated Spin‘-Dirac structure (a5;,wys). For the
quotient Spin-structure ag on B we have that ¢;(ag) = 0 = ¢ if ay is equivariant and
c1(ap) = —cq(m) if not. (see section 3.4)

5. Computation of The Integral

The aim of this section is to prove Theorem 4.1.1. The value of the integral in Theorem
4.1.1 does not depend on the extensions gpr and w of the metric gy, and the connection
w? to the interior of DE. Hence we may take a metric as in section 3 for gpg. For this
metric let the vector fields u, v be as in 3.2. The tangent bundle TrE = ker dm¢ along
the fibres of E is the associated complex line bundle to w¢m. The collar neighbourhood
M x I, was required to carry the product metric. Therefore VY is the covariant derivative
of the principal connection w® and provides an extension of w° to all of DE which we
take for w. We also have that HV v = 0 for all 7 and y € TDE, thus the difference term
(2.5.4) vanishes and the curvature of VY is VR".
By (2.5.5) we have

RY *
lim R} =

7—0 0 ﬂ.*DRB

The invariant polynomial P defining the Pontrjagin forms has the property that
P (A %) = P(A)P(C). Hence the total Pontrjagin form of ¢}, converges to

0cC
lim p(g7, ) = p(r}, RY) Ap(RY) = mpp(gs) A (1 + e(RY)?).
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Let e € Q*(B;R) be an Euler form of . Then both é := ¢(RY) and mje are Euler
forms of connections on the tangent bundle along the fibres Tr DFE, hence they must be
cohomologous. The restriction to the collar M x I, of é vanishes because v|y«;. is the
derivative in I-direction and V,v = 0 for any vector field . The integral along the fibres
is mpié; = 1: We have to compute [, é(u,v) for an oriented orthonormal basis u, v of
TrE. Since the metric on E was required to be product near the boundary, the integral
is half the corresponding integral over S? which is the Euler characteristic of S?. Now
consider an integral

K(p(9pp))f(er(w))mpf

DE
where we may assume that ¢;(w) = é. As 7 — 0 the integral converges to

| mKG@ENBKA+E @0 = [ mp(KEB)) K1+ ) (0) = 1)

DE
In view of
K(1+a)f(2) =1 = k(@) f(x) = 1 = 2 + O(a?)
we may split off é to get

| mwers)s) kASE=1)

€

The form
(k(€)f(é)—1)

S €
€

(k(mpe) f(mhe) — 1)

*

is cohomologous to

é

which still vanishes near the boundary. Because of mpé = 1 integration over the fibre

yields

(K(p(TB))p

to establish the formula of the theorem.

6. Vanishing of The Index on Disc Bundles

In this section we are going to prove Theorem 4.2.1. Since the index does not depend
on the metric nor on the curvature form in the interior of DF it suffices to construct a
specific extension of the Spin-Dirac structure on M to DE of the type as in section 3.2
for which the Hitchin-Lichnerowicz estimate holds.

In the case of boundary Spin®-Dirac structures (ays,wys) this is easy, since we can then
take connections on 75( and &(app) = 75 ({(ap) @ m which are induced from those on
the corresponding bundles over B. Hence their curvature forms are Q™¢ = 75Q¢ and
Qpr = Q2. Thus the function

1Qpr @1+ 10 Q™| (2) = [|Q®@1+1® Q| (1p(2))

is constant on the fibres of the disc bundle. Since by assumption it is dominated by the
scalar curvature of M all we must arrange for is that the fibres of DE have nonnegative
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curvature. This can be achieved by using any function f in the construction of section
3.2 with f” <0 and f = p outside some nonempty interval [0, 7].

A strictly equivariant Spin®-Dirac structure (s, wps) has an extension (apg,wpg) over
the disc bundle as in section 3.3. But here we need to extend the connection w® to 757
induced from the canonical trivialization of 7*w. By (3.3.1) the curvature form of wpg

on §(apg) = 7 (§(ap) @ 7) is
Qo =7THQ @ 14+ 1@ (d(rhw™ — W) + 7 Q7).

We search functions f and ¢ such that

"

4mbE®1+1®Qﬂﬂ|g—€;+m%

because by (3.2.1) the scalar curvature of DE is estimated by spg > —f"/f + sy. By
the triangular inequality for || - || we estimate

| < |72 e11+1®1® QY
+[[1® (dip(mpw™ — W) +yrpQ7) @ 1.

Qe ®1+1@07¢

For the strictly equivariant Spin“-Dirac structure we have Q,; = 7*Q. So the assumption
of the theorem is that the first term is dominated by the scalar curvature of M:

s:=min(sy —4|[1H2121+101® Q) > 0.
By (3.3.2) and (2.2.4) the second term equals
—¢'/2f + ¢ [[mp Q7.

Let m be a real number with m > s/4 and m > ||7},2"||(b) for all b € B. The theorem
is proved if we can solve the differential inequality

fll S ! _ !/
(6.0.1) ——~+—22C3?+¢m>——7AQWn

for functions f and ¢ satisfying the conditions of section 3.2 and 3.3.

The metric on the disc we are going to construct is a modification of the "torpedo” metric
of [GL1] and [Ga] looking like the rotation of the following picture around the horizontal
axis. The type of functions v that will do is plotted below:
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SAM -{e e N

0 I
0 « om /2 Y )

Let p be the radius of the orbits of S' on M. For every o, with 0 < o < p and
0 < B < or/2 there is a real number ¢ and a function f: Rf — [0, p] such that

flr) = esin(r/g),if r €0, 5],

f"(r) < 0forallr,

f(r) > o, ifr > on/2,

f(r) = pneard, i.e for some v < § we have f = p on [y, d].

Such a function f satisfies the conditions of section 3.2 for ¢ sufficiently large and thus
provides a smooth metric on the disc with radius §. We will show that one can find
o €0, p], B €]0,0r/2[ and a €]0, [ and a function ¢ : Ry — [0,1] with ¢/ = 1 on
[0,] and ¢ = 0 near 0 such that (f,¢) solve (6.0.1). (f, ) solve (6.0.1) on [0, ] if
—f"/f =1/¢* > 2m so we need

condition 1: 2mo® < 1.
There is the following obvious fact about smooth functions:

LEMMA 6.0.2. Let F' be a smooth real function such that F' > 0 and let b > a,

U, > W, > 0 be real numbers with F(b) — F(a) > ¥, — W, > 0. Then there is a smooth
real function U which is constant near a and near b with V(b) = ¥,, ¥(a) = ¥, and
0< ¥ < F

Clearly

(6.0.3) 0< —t)' < —f" —2mf
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implies (6.0.1) on [0, 3]. In view if the lemma we can extend ¢ to [0, 3] such that 1) is
constant near  and ¢(f) < s/4m and 6.0.3 hold if

condition 2: 1 — s/4m < /ﬂ —f" —2mf = (1 — 2mo?)(cos(a/p) — cos(B/p))

is fulfilled. If we set ¢ = ¢)(8) on [, om/2] then (f, ) solve (6.0.1) on [0, o7r/2]. In order
to get a solution on [0, d] with ¢) = 0 near § for some § we solve s/2 > —' /o + 2¢(8)m
on [om/2, oo for some extension of ¢ which is constant near o7 /2 and 6. Again applying

the lemma we need to find § such that
P

condition 3: / s/2 = 2¢(om/2)m = (s/2 — 2¢(om [2)m)(0 — om/2) > (o7 /2)
om/2

holds.

Now choose g sufficiently small to achieve that 1 — s/4m < 1 — 2mg?. Then condition 1

holds and we can accomplish condition 2 by choosing « sufficiently close to 0 and (3 close

to o /2. The values of ¢(om/2) < s/4m and p now being fixed we can take ¢ sufficiently

large to ensure that condition 3 holds.
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The Homogeneous Case

7. n-Invariants of Some Homogenous Spaces

In this part we will compute the n-invariant of the Atiyah-Patodi-Singer operator D" (¢7,)
on compact homogeneous Riemannian Spin-manifolds M = G/V carrying a nontrivial
homogeneous S'-action. The family of Riemannian metrics g7, on M we will deal with
is the canonical variation in the direction of this S!-action of a normal homogeneous
metric ¢ = ¢ which is not flat. Under these assumptions we get a principal S'-bundle
m: M — B = G/K for some closed subgroup K C G with K >V and K/V = S'. We
apply the Atiyah-Patodi-Singer index formula to the Dirac operator on the associated
disc bundle DE with boundary M.

7.1. Preliminaries.

(see [Be], [CE], [KN1], [KN2]) Let G be a connected Lie group and V' C G a closed
subgroup. Also assume that the circle S' acts homogeneously on M = G/V i.e. the
Sl-action commutes with the action of G. Since G acts transitively on M the isotropy
group I, C S' of a point p € M does not depend on the point p so we may assume the
Sl-action free. The preimage of the orbit of S through the image o of 1 € G under the
quotient map G — M is a closed subgroup K C G such that K>V and S' =T = K/V
acts by (kV,gV) — gkV for k € K, g € G. The Lie algebras of these groups will be
denoted by g, v, & t.

Normal metrics on M and B are induced from bi-invariant metrics on GG. These metrics
on G correspond to scalar products on g which are invariant under the adjoint action
Adg of G on g. Denoting the orthogonal complements of v and £ in g by m = vt and
b = €' and identifying t with the orthogonal complement of v in € we get orthogonal
splittings of g as

(7.1.1) g=0dm=0Dtdb=tDb

which are invariant under the adjoint actions Ady and Adg respectively. The tangent
bundle of M is associated to the principal V-bundle G — M:

(712) M =G X(V,Ady) M.

The curvature of normal metrics can be computed by O’Neill’s formulae. By left invari-
ance it suffices to do so at the point o € M. Let Z, 7, Z,w € m be the left invariant vector
fields corresponding to z,y, z,w € T,M = m. The vertical projection of the Riemannian
submersion G — M corresponds to the projection of g onto v. The Riemannian curvature

tensor of a normal metric on M is then

1 1

(Royz | w) == {lg. 0] [ [z, 2]) + ({2, 2] |9, w]) + So(2,y, 2 w)

29
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with

Solay2w) = 3 (# @l | [5,2%) + (82 | 7,01 + 5 (.5 | 12,0

Especially the sectional curvature of M is
Ku(z,y) = (R _! >3, g > 0
wl@ ) = Rz | ) = lllz o)+ 3371 >

for x,y € m. Hence the scalar curvature of M is positive iff there are x,y € m with
[z,y] # 0.

We can always replace GG by its universal covering and extend V and K appropriately
without changing M or B to achieve that G is simply connected. Then Spin-structures
on M are given by lifts of the adjoint representation V' — SO(m) over Spin(m) —
SO(m) (see also [Bér]): The differential of the action of G on M gives an action on
the orthonormal frame bundle of M. Since G is simply connected this action lifts to an
action on the principal Spin-bundle of the Spin-structure of M. By restricting we get
the isotropy representation of V" — SO(m) and a lift V' — Spin(m). Conversely given
such a lift V' — Spin(m) we use the V-structure (7.1.2) of the orthonormal frame bundle
of M to get an associated Spin-structure on M.

The Spin-structure on M is S'-equivariant if and only if the lift V' — Spin(m) of isotropy
representation V' — SO(m) extends to a lift X' — Spin(b) of the isotropy representation
K — SO(b).

7.2. Computation of The n-Invariant.

If the metric on M is normal then the orbits of one-parameter subgroups of GG are geodesic,
thus M — B has totally geodesic fibres. Let E be the associated complex line bundle
of the principal S'-bundle 7 : M = G/V — B = G/K and consider M = G/V as the
boundary of the disc bundle DFE. By assumption M has positive scalar curvature and
Theorem 4.2.1 shows that the index of the Spin-Dirac operator on DFE vanishes. So it
remains to compute the integral in the Atiyah-Patodi-Singer index formula.

We will do so for the metric gpr and the Spin‘-Dirac structure on the disc bundle DFE
of the type considered in section 3. The vector field u of section 3 corresponds to the
generator of t in (7.1.1). As before v € TDE is the radial derivative. Horizontal vectors
a € TDFE correspond to left invariant vector fields a € b. We will explicitly make use
of the formulae in section 3 for the covariant derivatives on the disc: V,v = V,u = 0,
Vv = f7'u, V.u= —fTIU and V,v = 0.

The A-tensor of the submersion M — B is

(Aab [ u) = 5 ([a,b] | u)

1
2
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for horizontal vectors a,b € T'M. For the Riemannian curvature tensor on DE at a point
with distance r from the zero section B C DE we get

f(r)
e 19 = =0
(Rouu |v) = 0,
(Ropuv) = 0,
(Rapb [ v) = 0,
(Rapv | u) = (Viago |u) = 2f'(r)(Aub | u)™
(Rapc | v) =0,
(Rowa|u) = (Aqu| Aqu) = f(r)*(Asu | Agu)™
(Ropb [u) = (VyVab|u) =v(Veb | u) = f'(r){Aad | u)"
(Rapc | u) F(r)(Rape | u)™,
(Rupe | B) = (RPye | ) — 204, | Ah) + {Aah | Ae) — {Aye | Ayh),

o~ o~

= (RZ,c | h)+ f(r)*(—=2(Aab | Ac)™ + (Ah | Ape)™ — (Aqe | Ah)™M).
The exponent in (- | -)* is to indicate that this term is computed in M with its normal
metric ¢ = g'. We need to extend the Spin-structure ap; on M to a Spin°-Dirac structure
(apg,wpr) on the disc bundle DE and compute the integral over DFE of the characteristic
form e “PP)/2 A(p(gpp)). If apr is not equivariant then we can extend it to a Spin-
structure to get ¢;(wpr) = 0 (see section 3.4). If ay, is equivariant then we let wpp
be the connection on 757 with covariant derivative VY of (2.5.3). As in section 4.1.1
the curvature of VY is RY = VR and is therefore given by the above formulae for the
Riemannian curvature tensor R on DFE. Hence for the first Chern form we obtain:
iQDE <RU ‘ 7)) f”

21 el = 2= -

du A dv+ f'{A]u)™).

The characteristic form e ©Pm)/2A(p(gpg)) at a point € DE with distance r from the
zero section can then be written as

f(r)
f(r)
where P is a polynomial whose coefficients are polynomials in the entries of A and R™,

RB, the latter being given by the formulae in 7.1. The volume form vol(DE, gpg) is
vol(DE, gpg) = m* vol(B) A du A dv and we finally get

e @nE)2 A (p(gpr))(x) = P(f(r), f'(r), ) vol(DE, gpr),

f"(r)
f(r)

3000 = [ o ipigne) = [ P(r). £, ) wol(DE. o)

f"(r)
f(r)

Now take any function f satisfying the conditions of section 3.2 and compute this integral.

= vol(B)/O P(f(r), f'(r), =) 2n f(r) dr
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8. An Example: The Wallach Spaces

As an example look at the Wallach spaces SU(3)/A,U(1) for coprime integers k and I,
where the embedding Ay, : U(1) — SU(3) is given by

2k 0 0
Z — 0 2 0
0 0 z k-t

These spaces are S'-bundles over the flag manifold B = SU(3)/K where K = T? is
a maximal torus in SU(3) and the S'-action is the action of S' = K/A;,U(1) as in
section 7. Since M is simply-connected there is a unique Spin-structure on M and this
must be equivariant for the S'-action because B is Spin. Therefore ¢ = ¢;(wpg) is given
by (7.2.1). The normal metric ¢ = ¢' on M is induced from the Cartan-Killing form on
su(3) which for 3 x 3 matrices A, B € su(3) is defined as

(A| B) = —1/2trace AB.

The radius p, of the orbits of S on (M, g%,) is pr = 7V/3/2Vk? + kI + 2. An explicit
computation on a computer gave:

/ pilgpe)® = 3k1(k+1) (16 — 412 p,* + 340 p,° — 63 p,*) /16,
DE
/ pi(gpr)ai(wpr)® = 3ki(k+1),
DE
/ ci(wpp)! = 3kl(k+1),
DE

/ pa(gpr) = 27kl(k+1) p74 (=20 + 21 PTQ . 4p74)/32.
DE

The n-invariant of (M, g,) for 7 < 1 is therefore

U(DJF(QX/[)J{J) = 2/ ecl(wDE)/QA(pQ(QDE)apl(QDE))
DE

= kl(k+1)(—128 — 2524 p.* + 2002 p,° — 369 p,*)/15360.
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