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Abstract

We consider the infima E(f) on homotopy classes of energy functionals
E defined on smooth maps f: M™ — V¥ between compact connected
Riemannian manifolds. If M contains a submanifold L of codimension
greater than the degree of E then E(f) is determined by the homotopy
class of the restriction of f to M \ L. Conversely if the infimum on
a homotopy class of a functional of at least conformal degree vanishes
then the map s trivial in homology of high degrees.

AMS Subject Classification: 58E15

1 Introduction

The main objective of this paper is a correspondence between universal energy

functionals on one side and factorization over subskeleta up to homotopy on

the other. By an energy functional E,: C*°(M,V) — R* we mean an integral

S y @(Vf, ..., V" f) of a constant coefficient differential operator ¢ over M, where

M and V are smooth compact connected Riemannian manifolds, see section 2.
By a theorem of White, [6], the infimum

Es(f) :=inf {Ee(g)|g: M — V, g = [}

of a first order functional depends only on the homotopy class of the restriction
of f to the d-skeleton M? of a triangulation of M, where d is the degree of ¢.
Theorem 3.1 contains an analogous statement for functionals involving higher
derivatives of f.

For first order functionals we consider a kind of converse, namely the impli-
cations of E4(f) = 0, restricting our considerations to functionals of (at least)
conformal degree d = n = dim M. For instance if ¢(df) = det (df*df)*/? and

E4(f) =0 then f is homotopic to a map f: M — V"~ into the n — 1-skeleton of
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a triangulation of V. For the n-norm ¢(df) = ||df|* = Tr ((df*df)™?) it is proved
in [6] that E¢( f) = 0 implies that f ~ x = V9 is nullhomotopic.

Theorem 3.2 interpolates homologically between these facts. Since ¢ depends
explicitely only on the differential df, the functional E,; corresponds biuniquely to
a symmetric function in n variables, see section 2. Fundamental are the Jacobians,
i.e. the conformal powers ¢(df) = crln/ 2l(alf*alf) of the elementary symmetric
polynomials o; in the eigenvalues of df *df. Proposition 2.1 establishes a hierarchy
0711/2 >> 03/4 >> ---Uln/zl >> e >> 071/2, where ¢ >> 1 indicates that we
can estimate the energies CEy(f) > Ey,(f) with a constant C' independent of
f. With respect to >> the n-norm ||df||” = Tr ((df*df)"/?) is equivalent to
ot (dfrdf) = (T (df*df))™2 1If ¢ >> o’* then E,;(f) = 0 implies that f
induces 0 in (co)homology of degree > [ with arbitrary coefficients, just like a
map which factors over the (I — 1)-skeleton V=t < V of some triangulation of
Vicvic...cvtcv., _

If f is homotopic to a map f: M — V!=' C V then clearly Ea;(f) = 0 for all
r. Actually we have Eq:.( f) = 0 for all polynomials ® of length > [. I do not know
in how far a converse holds. Theorem 3.2 only yields the vanishing of the primary
obstructions in this factorization problem and this needs at least conformal degree
r > n/2l. Proposition 3.3 shows that a general converse requires to assume even
higher than conformal degree.

Rationally these obstructions can be expressed by integrals over M of certain
forms constructed from minimal models, as in [2],[5] for instance. The energy
functionals behave like an absolute value thereof, similiar to the case of mapping
degree and volume for maps between manifolds of the same dimension n = k.
Consider as an example the 2-Jacobian ¢(A) = cr;’/ “(A*A) for maps M3 — V2,
ie. Es(f) = [, |fw*?* where w is the volume form of V. In [4] it is shown
that the Hopf invariant of a map M = S® — S* = V can be estimated by
EU§/4( f). Thus if Eo§/4( f) = 0 then f is nullhomotopic. More generally the

infinite higher homotopy groups of spheres are my,_1(S?*) = Z® G, G finite, and

the Hopf invariant hy, : mye_1(S?*) — 7Z detects the free part. As before one gets

that hy(f) = 0 if E @w-1s2:(f) = 0 but if & > 1 this does not imply that f is
92k

nullhomotopic. I am grateful to T. Riviere for this remark.

2 Energy functionals

For smooth maps f: M" — V¥ of compact Riemannian manifolds we consider
functionals

Ey(f) = /M SV L TS



of order r parametrized by functions

¢ @ <(]R")®j ® ]Rk) — Ry .

j=1

These functions are assumed invariant under the (diagonal) action of O(n)x O(k).
They can therefore be evaluated on the derivatives V7 f € I'(TM*® @ f*TV) to

yield well defined energy densities ¢(V f, V2f, ..., V"f). We will say that ¢ (or
E,) has degree < d if it satisfies an estimate

(A1 A < QU+ A+ Ao+ + A7) L Ay € @D @ RF.

Denoting by df* the adjoint of df and using the Riemannian metrics to iden-
tify the dual tangent bundles we get a bundle endomorphism df*df of T'M.
Examples of functionals as above are the classical (2-)energy, or more gen-
eral p-energy [, (Tr (df*df))p/2 of degree p, the exponential energy [, e™ (df*df)
of infinite degree, the Willmore energies W (f) := [, [[Vdf||* of degree 4,
Wo(f) == [, IIVdf(df*df)~"||>. For an immersion W is the L*-norm of the
mean curvature.

Functionals of first order, i.e. involving only first order derivatives, are con-
veniently described by nonnegative functions ®: M(n x n, R)"™ — RJ defined on
nonnegative symmetric matrices and invariant under conjugation by O(n). We

have ¢(A*A) = ¢(A) and

Eo() = Eolf) = [ (adp)avl,

We describe the estimates between polynomial energy functionals correspond-
ing to the successive lifting problem for a map f: M — V over the skeleta of V.

An invariant function ® on symmetric matrices is essentially the same as a
symmetric function in the eigenvalues. For an arbitrary symmetric function ® in
n variables denote by

(®) := min{r | ®(z1,..., 20,241 =0,...,2, =0) #0} .

the length of ®. If ® is polynomial (eventually with real exponents) then [(®) is
the length of the shortest monomial ocurring in ®. By ((z}' - --27%)), for iy > iy >
o+ >, 1; € RY, we denote the symmetrization of 21 - - - 2%, i.e. the function

D
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We have a simple hierarchy of the functionals E((xil_“mis)):
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Proposition 2.1 1. If1<r<s<Il<nandis; >¢e>0 then
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2. For any p >0, r > 1 we have

FEs < Egr + pvolM .

,ur—l

Proof: Let a;(x) > as(z) > ... > a,(x) be the eigenvalues of d, f*d,f, x € M.
Now

; ; o Z]‘ ------ ir .« .. i‘s .« .. Zl
E((xlllxl”))(f) - /]\; Z ary Ay Qs Ay

i1 ’ir is Z'l
n' E / a’7r1 ...... a[ﬂ_r...aﬂs...awl
a
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For the second claim we decompose the domain of integration to estimate

« O(df*df )"
/(I)(df df) < / % + / W
M {=[®(de f*du f)>p} {z|®(de f*da f)<p}
< Egr + pvolM .

r—1

We denote by g;(A) the Ith elementary symmetric polynomial in in the eigen-
values of a matrix A. It is determined by the identity det (1+XA) = >, o7(A) A
If ® and ¥ are homogeneous polynomials with [(¥) < [(®) = [ then there are
constants C' = C(¥, ®, n) and C = C(®,n, 1) such that

50E\1}(f) > CFEs(f) > Ealn/ﬂ(f)
for all f.

3 Statement of Results

Theorem 3.1 Let ¢ have degree d and let L C M be a submanifold of codimen-
sion q with ¢ > d. If f,g: M — V are homotopic on M \ L then E4(f) = E4(g).

For instance in order to compute W( f) we may modify f in a tubular neigh-
bourhood of a submanifold L of codimension at least 5. Even more specifically
W(f) = 0 for any map S™ — V if n > 5. It was proved by B. White in [6],
see also Pluzhnikov [3], that for functionals of order 1 the same holds if f and g
are homotopic on a (¢ — 1)-skeleton of M with ¢ > d, i.e. outside a skeleton of
codimension g > d.



Theorem 3.2 Assume that ¢(A) > o)(A* A2 and that E,(f) = 0. Then f
induces 0 in (co)homology groups of degree > 1.

The following proposition shows that the assumptions of theorem 3.2 do not
in general imply that f is homotopic to a map to f: M — V=1 C V.

Proposition 3.3 Let n = m+m/, k=141, ¢:5" — S, ¢= 5" — S" and
f=gxg:8mx 8™ — S x S Assume that r < m/2l or r < m'/2l'. Then
E¢(g xg)=0= E¢(g Ag') for ¢ = o where g A g': ST = Sm A ST s SHY
denotes the smash product of g and g'. In particular if g: St Sk and
f=8g=gAid:S™ — S* is the suspension of g then E4(f) =0 for ¢ = o} if
r<(n-—1)/2(k—1).

Proof: For the cartesian product f = g x ¢’ we get

X dg*d 0
df df=< Y dg,*dg,),

op(df*df) = oy(dg*dg) oy (dg”dg")
and B B B
Ey(f) = Eoy (Q)Eo;, (q) -

If r < m/2l or r < m'/2l' then one of the factors vanishes by [6] or theorem
3.1, hence E,r(f) = 0.

The assertion about the smash product follows from that for the cartesian
product. We deform ¢ and ¢’ to maps which are constant on some open sets
U cC 8™ and U’ C 8™ containing the base points. The projection 7: S™ x S™ —

S™ A S™ and its inverse have bounded differential over S™\ U x S™ \ U’. Hence
we can estimate

Ey(gnhg) = / ongng) < C / op(m' o (gxg))

m(ST\UxS™\U") Sm\Ux S™'\U’
< ¢ [ oaxd)=CEglax)
S gm/
where 7: St x SV — S A SV, °

The generator of 74(S®) = Z/2 is the suspension of the Hopf map n: S? — S2.
Hence E,r(sn) = 0 for r < 3/4 but the conformal power is r = 2/3.



4 Proof of Theorem 3.1

Let R be small enough such that the exponential map restricted to the R-disc
bundle of the normal bundle of L is a diffeomorphism, i.e. the map

RDv(L) — Ug(L):={x € M |d(z,L) < R}
v E (L) = exp,(v).

We will write p(z) = d(x, L) for the distance from L and pu(r,z) = exp,(rv) for
v = exp,(v) € Ur(L) and r < R/p(x). Let 0 < a < f=2a<e=3a <R
and choose smooth functions y: [0, R] — [0, 1] and ¢: [0, R] — [0, R/«] such that
x(x) =0 for z € [0,a], x(x) =1 for z € [5,R], X' > 0 and ¥(z) = R/« for
z€[0,a], Y(x)=1forx € [e,R], Y <0and R/x > ¢(x) > R/2z for z € |o, (.
If the functional in question has order r we also require that for the derivatives
XY and Y, j = 0...r, we have that |x)(z)| < C/a? and [¢V)| < C/ad*
Here and in the sequel C' denotes a suitable constant independent of a. Denote
by 7 the map M — M x [0, 1] given by

m(z) == (u(@(p(x)), ), x(p(z))) -

Note that the image of 7 is contained in the compact set
K =M x {1} UM\ Ugj2(L) x [0,1]U M x {0} .

Let H: K — V be a smooth homotopy between f = H |0y and g|arx 1y outside
L. The map h defined by h(z) := H(n(z)) is homotopic to f and coincides with
gon M\ U (L). Thus

Ey(f) — Eo(g) = Eg(h) — Ey(g) = | 6(Vh,.. V) = | 6(Vg,....V"g).

For the proof of the theorem it suffices to show that the energy of h on U.(L) can
be made arbitrarily small by choosing « appropriately. So we need to estimate
the (covariant) derivatives of order < r of h. Up to some constants depending on
the derivatives of H on the compact set K we have to estimate Vir, j =1...7.
At p € L we use a chart £ of Ug(L) mapping L to R"? x {0}, preserving p, i.e.
€(z) = (z,y) with p(z) = |z|, and such that &(u(r, 2)) = (rx,y). Up to constants
depending on derivatives of & we have to estimate the derivatives of

(@, y) = (@(z)z,y, x(|2])) -

A straightforward calculation shows that
J
Vix(al) = Y xO(zho/[p)
i=1
J

V(e = Y eD(ja)o1/[af ) .

i=1



Hence

IVIx(a)ll < Ca™? and [V ((|al)2)]| < Ca™ .

Therefore we can estimate V/7 by o~/ and the energy integral by

Ey(hlo.w)) = ¢(Vh,...,V"h)
Ud(L)
< volU(L)C(1 + |VA|* 4 - + |[V"h|¥")
< Cela™4 = (039077
If ¢ > d then this tends to 0 for « — 0. °

5 Proof of Theorem 3.2

Let M4, V4 denote the g-skeleta of smooth triangulations of M and V respectively.
By the Deformation Theorem of geometric measure theory, [1], we can deform
the restriction f|ya of f to a Lipschitz map f mapping M9 to V¢ such that for
the g-dimensional Hausdorff measures H we have

HA(F(M?)) < CrHI(f(M?))

where '} does not depend on f.

It suffices to consider the case ® = af/ . We choose an embedding of the
tangent bundle TM — M x R?® into a trivial bundle of rank s. Let 7 be the
orthogonal projection M x R®* — T'M. Chose € small enough so that ¥,:m +—
exp,,(mv) is a diffeomorphism of M for all v € D* = {v € R* | |v| < €}. Also let
UM denote the image of M? x D?® under the map W: (m,v) — exp,,(mv). Let
fo(m) = f(exp,,(mv)). We denote by eq(f) = ®(df*df) the energy density and
apply the transformation formula to the submersion W: M? x D* — U.M9. Let
J, ¥ be the n-Jacobian of this map,

1

e = et T (U1 (2))

and .
minasax ps Jp ¥

max, ey, pa H¥H9(U—1(2) ) max, o | dn 0l dpmthy |72

where |d,,¢kd,, 1, | denotes the operator norm of d,, 1k d,, ), for m € M9, v € D?,
i.e. its largest eigenvalue. Then

Cs =

Eo(f) > /Uqu%(f)
> 0 / a2
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_ o /M - eal D(¥() L )y

> (Y, min Jn\If/Mq N ea(f)(V(y))dy

MaxDs

— Cy min J,U / S /M o) (W, (m))dmdo

Max Ds

03/S/Mq es(f o U, )dmdy . (5.1)

v

Assume that Eg(f) < 0 for some d. By (5.1) we find v € D® such that

/Mq ea( folara)(m)dm < §/Cs .

From proposition 2.1 there is a constant Cy such that

1
HI(fo(M?) = E 2 <CiE gm < Cy <7E /2t 4 pvol M )
q l 1

o ,un/qfl o

1
< C4 (W(s/Cg + ,MVOIM )

for any g > 0 provided ¢ > [. Choosing ¢ and p appropriately we can achieve
that this is strictly less than the volume of the smallest g-cell of V. Thus we
get a map f, homotopic to f which maps M9 to V¢ and misses a point in every

g-cell of V4. Therefore it is homotopic to a map M? — V41, .
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