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Abstract

We consider the infima Ẽ(f) on homotopy classes of energy functionals
E defined on smooth maps f :Mn → V k between compact connected
Riemannian manifolds. If M contains a submanifold L of codimension
greater than the degree of E then Ẽ(f) is determined by the homotopy
class of the restriction of f to M \ L. Conversely if the infimum on
a homotopy class of a functional of at least conformal degree vanishes
then the map is trivial in homology of high degrees.

AMS Subject Classification: 58E15

1 Introduction

The main objective of this paper is a correspondence between universal energy
functionals on one side and factorization over subskeleta up to homotopy on
the other. By an energy functional Eφ:C

∞(M,V ) → R
+ we mean an integral∫

M
φ(∇f, . . . ,∇rf) of a constant coefficient differential operator φ over M , where

M and V are smooth compact connected Riemannian manifolds, see section 2.
By a theorem of White, [6], the infimum

ẼΦ(f) := inf {EΦ(g)|g:M → V, g ≃ f}

of a first order functional depends only on the homotopy class of the restriction
of f to the d-skeleton Md of a triangulation of M , where d is the degree of φ.
Theorem 3.1 contains an analogous statement for functionals involving higher
derivatives of f .

For first order functionals we consider a kind of converse, namely the impli-
cations of Ẽφ(f) = 0, restricting our considerations to functionals of (at least)
conformal degree d = n = dimM . For instance if φ(df) = det (df ∗df)1/2 and

Ẽφ(f) = 0 then f is homotopic to a map f̃ :M → V n−1 into the n− 1-skeleton of
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a triangulation of V . For the n-norm φ(df) = ‖df‖n = Tr ((df ∗df)n/2) it is proved

in [6] that Ẽφ(f) = 0 implies that f ≃ ∗ = V 0 is nullhomotopic.
Theorem 3.2 interpolates homologically between these facts. Since φ depends

explicitely only on the differential df , the functional Eφ corresponds biuniquely to
a symmetric function in n variables, see section 2. Fundamental are the Jacobians,
i.e. the conformal powers φ(df) = σ

n/2l
l (df ∗df) of the elementary symmetric

polynomials σl in the eigenvalues of df ∗df . Proposition 2.1 establishes a hierarchy
σ
n/2
1 >> σ

n/4
2 >> · · ·σ

n/2l
l >> · · · >> σ

1/2
n , where φ >> ψ indicates that we

can estimate the energies CEφ(f) ≥ Eψ(f) with a constant C independent of
f . With respect to >> the n-norm ‖df‖n = Tr ((df ∗df)n/2) is equivalent to

σ
n/2
1 (df ∗df) = (Tr (df ∗df))n/2. If φ >> σ

n/2l
l then Ẽφ(f) = 0 implies that f

induces 0 in (co)homology of degree ≥ l with arbitrary coefficients, just like a
map which factors over the (l − 1)-skeleton V l−1 →֒ V of some triangulation of
V 0 ⊂ V 1 ⊂ · · · ⊂ V k−1 ⊂ V .

If f is homotopic to a map f̃ :M → V l−1 ⊂ V then clearly Ẽσr
l
(f) = 0 for all

r. Actually we have ẼΦ(f) = 0 for all polynomials Φ of length ≥ l. I do not know
in how far a converse holds. Theorem 3.2 only yields the vanishing of the primary
obstructions in this factorization problem and this needs at least conformal degree
r ≥ n/2l. Proposition 3.3 shows that a general converse requires to assume even
higher than conformal degree.

Rationally these obstructions can be expressed by integrals over M of certain
forms constructed from minimal models, as in [2],[5] for instance. The energy
functionals behave like an absolute value thereof, similiar to the case of mapping
degree and volume for maps between manifolds of the same dimension n = k.
Consider as an example the 2-Jacobian φ(A) = σ

3/4
2 (A∗A) for maps M3 → V 2,

i.e. Eφ(f) =
∫
M
|f ∗ω|3/2 where ω is the volume form of V . In [4] it is shown

that the Hopf invariant of a map M = S3 → S2 = V can be estimated by
E
σ

3/4
2

(f). Thus if Ẽ
σ

3/4
2

(f) = 0 then f is nullhomotopic. More generally the

infinite higher homotopy groups of spheres are π4k−1(S
2k) = Z⊕G, G finite, and

the Hopf invariant hk : π4k−1(S
2k) → Z detects the free part. As before one gets

that hk(f) = 0 if Ẽ
σ

(4k−1)/2k
2k

(f) = 0 but if k > 1 this does not imply that f is

nullhomotopic. I am grateful to T. Rivière for this remark.

2 Energy functionals

For smooth maps f :Mn → V k of compact Riemannian manifolds we consider
functionals

Eφ(f) :=

∫

M

φ(∇f,∇2f, . . . ,∇rf) ,
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of order r parametrized by functions

φ :

r⊕

j=1

(
(Rn)⊗j ⊗ R

k
)
→ R

+
0 .

These functions are assumed invariant under the (diagonal) action of O(n)×O(k).
They can therefore be evaluated on the derivatives ∇jf ∈ Γ(TM∗⊗j ⊗ f ∗TV ) to
yield well defined energy densities φ(∇f,∇2f, . . . ,∇rf). We will say that φ (or
Eφ) has degree ≤ d if it satisfies an estimate

|φ(A1, . . . , Ar)| ≤ C(1 + ‖A1‖
d + ‖A2‖

d/2 + · · · + ‖Ar‖
d/r) , Aj ∈ (Rn)⊗j ⊗ R

k .

Denoting by df ∗ the adjoint of df and using the Riemannian metrics to iden-
tify the dual tangent bundles we get a bundle endomorphism df ∗df of TM .
Examples of functionals as above are the classical (2-)energy, or more gen-

eral p-energy
∫
M

(Tr (df ∗df))p/2 of degree p, the exponential energy
∫
M
eTr (df∗df)

of infinite degree, the Willmore energies W (f) :=
∫
M
‖∇df‖2 of degree 4,

W0(f) :=
∫
M
‖∇df(df ∗df)−1‖2. For an immersion W0 is the L2-norm of the

mean curvature.
Functionals of first order, i.e. involving only first order derivatives, are con-

veniently described by nonnegative functions Φ:M(n × n,R)+ → R
+
0 defined on

nonnegative symmetric matrices and invariant under conjugation by O(n). We
have Φ(A∗A) = φ(A) and

Eφ(f) = EΦ(f) :=

∫

M

Φ(df ∗df))dvolg .

We describe the estimates between polynomial energy functionals correspond-
ing to the successive lifting problem for a map f :M → V over the skeleta of V .

An invariant function Φ on symmetric matrices is essentially the same as a
symmetric function in the eigenvalues. For an arbitrary symmetric function Φ in
n variables denote by

l(Φ) := min{r | Φ(x1, . . . , xr, xr+1 = 0, . . . , xn = 0) 6= 0} .

the length of Φ. If Φ is polynomial (eventually with real exponents) then l(Φ) is
the length of the shortest monomial ocurring in Φ. By ((xi11 · · ·xiss )), for i1 ≥ i2 ≥
· · · ≥ is, ij ∈ R

+
0 , we denote the symmetrization of xi11 · · ·xiss , i.e. the function

∑

π∈Sn

xi1π1 · · ·x
is
πs .

We have a simple hierarchy of the functionals E
((x

i1
1 ···xis

s ))
:

Proposition 2.1 1. If 1 ≤ r < s ≤ l ≤ n and is ≥ ǫ ≥ 0 then

E
((x

i1
1 ···x

il
l ))

(f) ≤ n!E
((x

i1
1 ···xir+ǫ

r ···xis−ǫ
s ···x

il
l ))

(f) .
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2. For any µ > 0, r ≥ 1 we have

EΦ ≤
1

µr−1
EΦr + µ volM .

Proof: Let a1(x) ≥ a2(x) ≥ . . . ≥ an(x) be the eigenvalues of dxf
∗dxf , x ∈ M .

Now

E
((x

i1
1 ···x

il
l ))

(f) =

∫

M

∑

π∈Sn

ai1π1 · · · · · ·a
ir
πr · · ·a

is
πs · · ·a

il
πl

≤ n!
∑

π∈Sn

∫

aπ1≥...≥aπl

ai1π1 · · · · · ·a
ir
πr · · ·a

is
πs · · ·a

il
πl

≤ n!
∑

π∈Sn

∫

aπ1≥...≥aπl

ai1π1 · · · · · ·a
ir+ǫ
πr · · ·ais−ǫπs · · ·ailπl

≤ n!E
((x

i1
1 ···xir+ǫ

r ···xis−ǫ
s ···x

il
l ))

(f)

For the second claim we decompose the domain of integration to estimate
∫

M

Φ(df ∗df) ≤

∫

{x|Φ(dxf∗dxf)>µ}

Φ(df ∗df)r

µr−1
+

∫

{x|Φ(dxf∗dxf)≤µ}

µ

≤
1

µr−1
EΦr + µvolM .

•

We denote by σl(A) the lth elementary symmetric polynomial in in the eigen-
values of a matrix A. It is determined by the identity det (1+λA) =

∑
l σl(A)λl.

If Φ and Ψ are homogeneous polynomials with l(Ψ) ≤ l(Φ) = l then there are

constants C̃ = C̃(Ψ,Φ, n) and C = C(Φ, n, l) such that

C̃CEΨ(f) ≥ CEΦ(f) ≥ E
σ

n/2l
l

(f)

for all f .

3 Statement of Results

Theorem 3.1 Let φ have degree d and let L ⊂M be a submanifold of codimen-
sion q with q > d. If f, g:M → V are homotopic on M \ L then Ẽφ(f) = Ẽφ(g).

For instance in order to compute W̃ (f) we may modify f in a tubular neigh-
bourhood of a submanifold L of codimension at least 5. Even more specifically
W̃ (f) = 0 for any map Sn → V if n ≥ 5. It was proved by B. White in [6],
see also Pluzhnikov [3], that for functionals of order 1 the same holds if f and g
are homotopic on a (q − 1)-skeleton of M with q > d, i.e. outside a skeleton of
codimension q > d.
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Theorem 3.2 Assume that φ(A) ≥ σl(A
∗A)n/2l and that Ẽφ(f) = 0. Then f

induces 0 in (co)homology groups of degree ≥ l.

The following proposition shows that the assumptions of theorem 3.2 do not
in general imply that f is homotopic to a map to f̃ :M → V l−1 ⊂ V .

Proposition 3.3 Let n = m + m′, k = l + l′, g:Sm → Sl, g′:Sm
′

→ Sl
′

and
f = g × g′:Sm × Sm

′

→ Sl × Sl
′

. Assume that r < m/2l or r < m′/2l′. Then

Ẽφ(g × g′) = 0 = Ẽφ(g ∧ g
′) for φ = σrk where g ∧ g′:Sm+m′

= Sm ∧ Sm
′

→ Sl+l
′

denotes the smash product of g and g′. In particular if g:Sn−1 → Sk−1 and
f = Sg = g ∧ id:Sm → Sk is the suspension of g then Ẽφ(f) = 0 for φ = σrk if
r < (n− 1)/2(k − 1).

Proof: For the cartesian product f = g × g′ we get

df ∗df =

(
dg∗dg 0

0 dg′∗dg′

)
,

σk(df
∗df) = σl(dg

∗dg)σl′(dg
′∗dg′)

and
Ẽφ(f) = Ẽσr

l
(g)Ẽσr

l′
(g′) .

If r < m/2l or r < m′/2l′ then one of the factors vanishes by [6] or theorem

3.1, hence Ẽσr
k
(f) = 0.

The assertion about the smash product follows from that for the cartesian
product. We deform g and g′ to maps which are constant on some open sets
U ⊂ Sm and U ′ ⊂ Sm

′

containing the base points. The projection π:Sm×Sm
′

→
Sm∧Sm

′

and its inverse have bounded differential over Sm \U ×Sm
′

\U ′. Hence
we can estimate

Eφ(g ∧ g
′) =

∫

π(Sm\U×Sm′\U ′)

σrk(g ∧ g
′) ≤ C

∫

Sm\U×Sm′\U ′

σrk(π
′ ◦ (g × g′))

≤ C

∫

Sm×Sm′

σrk(g × g′) = CEσr
l′
(g × g′)

where π′:Sl × Sl
′

→ Sl ∧ Sl
′

. •

The generator of π4(S
3) ∼= Z/2 is the suspension of the Hopf map η:S3 → S2.

Hence Ẽσr
3
(sη) = 0 for r < 3/4 but the conformal power is r = 2/3.
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4 Proof of Theorem 3.1

Let R be small enough such that the exponential map restricted to the R-disc
bundle of the normal bundle of L is a diffeomorphism, i.e. the map

RDν(L) → UR(L) := {x ∈M | d(x, L) ≤ R}

v ∈ νp(L) 7→ expp(v) .

We will write ρ(x) = d(x, L) for the distance from L and µ(r, x) = expp(rv) for
x = expp(v) ∈ UR(L) and r ≤ R/ρ(x). Let 0 < α < β = 2α < ǫ = 3α < R
and choose smooth functions χ: [0, R] → [0, 1] and ψ: [0, R] → [0, R/α] such that
χ(x) = 0 for x ∈ [0, α], χ(x) = 1 for x ∈ [β,R], χ′ ≥ 0 and ψ(x) = R/α for
x ∈ [0, α], ψ(x) = 1 for x ∈ [ǫ, R], ψ′ ≤ 0 and R/x ≥ ψ(x) ≥ R/2x for x ∈ [α, β].
If the functional in question has order r we also require that for the derivatives
χ(j) and ψ(j), j = 0 . . . r, we have that |χ(j)(x)| ≤ C/αj and |ψ(j)| ≤ C/αj+1.
Here and in the sequel C denotes a suitable constant independent of α. Denote
by π the map M →M × [0, 1] given by

π(x) := (µ(ψ(ρ(x)), x), χ(ρ(x))) .

Note that the image of π is contained in the compact set

K := M × {1} ∪M \ UR/2(L) × [0, 1] ∪M × {0} .

Let H :K → V be a smooth homotopy between f = H|M×{0} and g|M×{1} outside
L. The map h defined by h(x) := H(π(x)) is homotopic to f and coincides with
g on M \ Uǫ(L). Thus

Ẽφ(f) − Ẽφ(g) = Ẽφ(h) − Ẽφ(g) =

∫

Uǫ

φ(∇h, . . . ,∇rh) −

∫

Uǫ

φ(∇g, . . . ,∇rg) .

For the proof of the theorem it suffices to show that the energy of h on Uǫ(L) can
be made arbitrarily small by choosing α appropriately. So we need to estimate
the (covariant) derivatives of order ≤ r of h. Up to some constants depending on
the derivatives of H on the compact set K we have to estimate ∇jπ, j = 1 . . . r.
At p ∈ L we use a chart ξ of UR(L) mapping L to R

n−q × {0}, preserving ρ, i.e.
ξ(z) = (x, y) with ρ(z) = |x|, and such that ξ(µ(r, z)) = (rx, y). Up to constants
depending on derivatives of ξ we have to estimate the derivatives of

(x, y) 7→ (ψ(|x|)x, y, χ(|x|)) .

A straightforward calculation shows that

∇jχ(|x|) =

j∑

i=1

χ(i)(|x|)O(1/|x|j−i) ,

∇jψ(|x|)x =

j∑

i=1

ψ(i)(|x|)O(1/|x|j−i−1) .
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Hence
||∇jχ(|x|)|| ≤ Cα−j and ||∇j (ψ(|x|)x) || ≤ Cα−j .

Therefore we can estimate ∇jπ by α−j and the energy integral by

Eφ(h|Uǫ(L)) =

∫

Uǫ(L)

φ(∇h, . . . ,∇rh)

≤ volUǫ(L)C(1 + |∇h|d + · · · + |∇rh|d/r)

≤ Cǫqα−d = C3qαq−d

If q > d then this tends to 0 for α → 0. •

5 Proof of Theorem 3.2

LetM q, V q denote the q-skeleta of smooth triangulations ofM and V respectively.
By the Deformation Theorem of geometric measure theory, [1], we can deform
the restriction f |Mq of f to a Lipschitz map f̃ mapping M q to V q such that for
the q-dimensional Hausdorff measures H we have

Hq(f̃(M q)) ≤ C1H
q(f(M q))

where C1 does not depend on f .
It suffices to consider the case Φ = σ

n/2l
l . We choose an embedding of the

tangent bundle TM →֒ M × R
s into a trivial bundle of rank s. Let π be the

orthogonal projection M × R
s → TM . Chose ǫ small enough so that Ψv:m 7→

expm(πv) is a diffeomorphism of M for all v ∈ Ds = {v ∈ R
s | |v| ≤ ǫ}. Also let

UǫM
q denote the image of M q ×Ds under the map Ψ: (m, v) 7→ expm(πv). Let

fv(m) = f(expm(πv)). We denote by eΦ(f) = Φ(df ∗df) the energy density and
apply the transformation formula to the submersion Ψ:M q ×Ds → UǫM

q. Let
JnΨ be the n-Jacobian of this map,

C2 =
1

maxz∈UǫMqHs+q−n(Ψ−1(z))

and

C3 =
minMq×Ds JnΨ

maxz∈UǫMqHs+q−n(Ψ−1(z))maxm,v|dmψ∗
vdmψv|

n/2
,

where |dmψ
∗
vdmψv| denotes the operator norm of dmψ

∗
vdmψv for m ∈M q, v ∈ Ds,

i.e. its largest eigenvalue. Then

EΦ(f) ≥

∫

UǫMq

eΦ(f)

≥ C2

∫

UǫMq

eΦ(f)Hs+q−n(Ψ−1(z))dz

7



= C2

∫

Mq×Ds

eΦ(f)(Ψ(y))JnΨ(y)dy

≥ C2 min
Mq×Ds

JnΨ

∫

Mq×Ds

eΦ(f)(Ψ(y))dy

= C2 min
Mq×Ds

JnΨ

∫

Ds

∫

Mq

eΦ(f)(Ψv(m))dmdv

≥ C3

∫

Ds

∫

Mq

eΦ(f ◦ Ψv)dmdv . (5.1)

Assume that EΦ(f) ≤ δ for some δ. By (5.1) we find v ∈ Ds such that
∫

Mq

eΦ(fv|Mq)(m)dm ≤ δ/C3 .

From proposition 2.1 there is a constant C4 such that

Hq(fv(M
q)) = E

σ
1/2
q

≤ C4Eσq/2l
l

≤ C4

(
1

µn/q−1
E
σ

n/2l
l

+ µvolM

)

≤ C4

(
1

µn/q−1
δ/C3 + µvolM

)

for any µ > 0 provided q ≥ l. Choosing δ and µ appropriately we can achieve
that this is strictly less than the volume of the smallest q-cell of V q. Thus we
get a map f̃v homotopic to f which maps M q to V q and misses a point in every
q-cell of V q. Therefore it is homotopic to a map M q → V q−1. •
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