Infima of Universal Energy Functionals on Homotopy Classes

Stefan Bechtluft-Sachs

February 25, 2003

Abstract

We consider the infima $\widetilde{E}(f)$ on homotopy classes of energy functionals E defined on smooth maps $f: M^n \to V^k$ between compact connected Riemannian manifolds. If M contains a submanifold L of codimension greater than the degree of E then $\widetilde{E}(f)$ is determined by the homotopy class of the restriction of f to $M \setminus L$. Conversely if the infimum on a homotopy class of a functional of at least conformal degree vanishes then the map is trivial in homology of high degrees.

AMS Subject Classification: 58E15

1 Introduction

The main objective of this paper is a correspondence between universal energy functionals on one side and factorization over subskeleta up to homotopy on the other. By an energy functional E_{ϕ} : $C^{\infty}(M,V) \to \mathbb{R}^+$ we mean an integral $\int_M \phi(\nabla f, \ldots, \nabla^r f)$ of a constant coefficient differential operator ϕ over M, where M and V are smooth compact connected Riemannian manifolds, see section 2.

By a theorem of White, [6], the infimum

$$\widetilde{E}_{\Phi}(f) := \inf \{ E_{\Phi}(g) | g: M \to V, \ g \simeq f \}$$

of a first order functional depends only on the homotopy class of the restriction of f to the d-skeleton M^d of a triangulation of M, where d is the degree of ϕ . Theorem 3.1 contains an analogous statement for functionals involving higher derivatives of f.

For first order functionals we consider a kind of converse, namely the implications of $\widetilde{E}_{\phi}(f)=0$, restricting our considerations to functionals of (at least) conformal degree $d=n=\dim M$. For instance if $\phi(df)=\det{(df^*df)^{1/2}}$ and $\widetilde{E}_{\phi}(f)=0$ then f is homotopic to a map $\widetilde{f}\colon M\to V^{n-1}$ into the n-1-skeleton of

a triangulation of V. For the n-norm $\phi(df) = ||df||^n = \text{Tr}((df^*df)^{n/2})$ it is proved in [6] that $\widetilde{E}_{\phi}(f) = 0$ implies that $f \simeq * = V^0$ is nullhomotopic.

Theorem 3.2 interpolates homologically between these facts. Since ϕ depends explicitly only on the differential df, the functional E_{ϕ} corresponds biuniquely to a symmetric function in n variables, see section 2. Fundamental are the Jacobians, i.e. the conformal powers $\phi(df) = \sigma_l^{n/2l}(df^*df)$ of the elementary symmetric polynomials σ_l in the eigenvalues of df^*df . Proposition 2.1 establishes a hierarchy $\sigma_1^{n/2} >> \sigma_2^{n/4} >> \cdots \sigma_l^{n/2l} >> \cdots >> \sigma_n^{1/2}$, where $\phi >> \psi$ indicates that we can estimate the energies $CE_{\phi}(f) \geq E_{\psi}(f)$ with a constant C independent of f. With respect to >> the n-norm $||df||^n = \text{Tr}((df^*df)^{n/2})$ is equivalent to $\sigma_1^{n/2}(df^*df) = (\text{Tr}(df^*df))^{n/2}$. If $\phi >> \sigma_l^{n/2l}$ then $\widetilde{E}_{\phi}(f) = 0$ implies that f induces 0 in (co)homology of degree $\geq l$ with arbitrary coefficients, just like a map which factors over the (l-1)-skeleton $V^{l-1} \hookrightarrow V$ of some triangulation of $V^0 \subset V^1 \subset \cdots \subset V^{k-1} \subset V$.

If f is homotopic to a map $\tilde{f}: M \to V^{l-1} \subset V$ then clearly $\widetilde{E}_{\sigma_l^r}(f) = 0$ for all r. Actually we have $\widetilde{E}_{\Phi}(f) = 0$ for all polynomials Φ of length $\geq l$. I do not know in how far a converse holds. Theorem 3.2 only yields the vanishing of the primary obstructions in this factorization problem and this needs at least conformal degree $r \geq n/2l$. Proposition 3.3 shows that a general converse requires to assume even higher than conformal degree.

Rationally these obstructions can be expressed by integrals over M of certain forms constructed from minimal models, as in [2],[5] for instance. The energy functionals behave like an absolute value thereof, similiar to the case of mapping degree and volume for maps between manifolds of the same dimension n=k. Consider as an example the 2-Jacobian $\phi(A)=\sigma_2^{3/4}(A^*A)$ for maps $M^3\to V^2$, i.e. $E_{\phi}(f)=\int_M |f^*\omega|^{3/2}$ where ω is the volume form of V. In [4] it is shown that the Hopf invariant of a map $M=S^3\to S^2=V$ can be estimated by $E_{\sigma_2^{3/4}}(f)$. Thus if $\widetilde{E}_{\sigma_2^{3/4}}(f)=0$ then f is nullhomotopic. More generally the infinite higher homotopy groups of spheres are $\pi_{4k-1}(S^{2k})=\mathbb{Z}\oplus G$, G finite, and the Hopf invariant $h_k:\pi_{4k-1}(S^{2k})\to\mathbb{Z}$ detects the free part. As before one gets that $h_k(f)=0$ if $\widetilde{E}_{\sigma_{2k}^{(4k-1)/2k}}(f)=0$ but if k>1 this does not imply that f is nullhomotopic. I am grateful to T. Rivière for this remark.

2 Energy functionals

For smooth maps $f: M^n \to V^k$ of compact Riemannian manifolds we consider functionals

$$E_{\phi}(f) := \int_{M} \phi(\nabla f, \nabla^{2} f, \dots, \nabla^{r} f) ,$$

of order r parametrized by functions

$$\phi: \bigoplus_{j=1}^r \left((\mathbb{R}^n)^{\otimes j} \otimes \mathbb{R}^k \right) \to \mathbb{R}_0^+$$
.

These functions are assumed invariant under the (diagonal) action of $O(n) \times O(k)$. They can therefore be evaluated on the derivatives $\nabla^j f \in \Gamma(TM^{*\otimes j} \otimes f^*TV)$ to yield well defined energy densities $\phi(\nabla f, \nabla^2 f, \dots, \nabla^r f)$. We will say that ϕ (or E_{ϕ}) has degree $\leq d$ if it satisfies an estimate

$$|\phi(A_1,\ldots,A_r)| \le C(1+||A_1||^d+||A_2||^{d/2}+\cdots+||A_r||^{d/r}), \ A_j \in (\mathbb{R}^n)^{\otimes j} \otimes \mathbb{R}^k.$$

Denoting by df^* the adjoint of df and using the Riemannian metrics to identify the dual tangent bundles we get a bundle endomorphism df^*df of TM. Examples of functionals as above are the classical (2-)energy, or more general p-energy $\int_M \left(\text{Tr} \left(df^*df \right) \right)^{p/2}$ of degree p, the exponential energy $\int_M e^{\text{Tr} \left(df^*df \right)}$ of infinite degree, the Willmore energies $W(f) := \int_M \|\nabla df\|^2$ of degree 4, $W_0(f) := \int_M \|\nabla df (df^*df)^{-1}\|^2$. For an immersion W_0 is the L^2 -norm of the mean curvature.

Functionals of first order, i.e. involving only first order derivatives, are conveniently described by nonnegative functions $\Phi: M(n \times n, \mathbb{R})^+ \to \mathbb{R}_0^+$ defined on nonnegative symmetric matrices and invariant under conjugation by O(n). We have $\Phi(A^*A) = \phi(A)$ and

$$E_{\phi}(f) = E_{\Phi}(f) := \int_{M} \Phi(df^*df)) d\text{vol}_{g}.$$

We describe the estimates between polynomial energy functionals corresponding to the successive lifting problem for a map $f: M \to V$ over the skeleta of V.

An invariant function Φ on symmetric matrices is essentially the same as a symmetric function in the eigenvalues. For an arbitrary symmetric function Φ in n variables denote by

$$l(\Phi) := \min\{r \mid \Phi(x_1, \dots, x_r, x_{r+1} = 0, \dots, x_n = 0) \neq 0\}$$
.

the length of Φ . If Φ is polynomial (eventually with real exponents) then $l(\Phi)$ is the length of the shortest monomial occurring in Φ . By $((x_1^{i_1} \cdots x_s^{i_s}))$, for $i_1 \geq i_2 \geq \cdots \geq i_s, i_j \in \mathbb{R}_0^+$, we denote the symmetrization of $x_1^{i_1} \cdots x_s^{i_s}$, i.e. the function

$$\sum_{\pi \in S_n} x_{\pi 1}^{i_1} \cdots x_{\pi s}^{i_s} .$$

We have a simple hierarchy of the functionals $E_{((x_1^{i_1}\cdots x_s^{i_s}))}$:

Proposition 2.1 1. If $1 \le r < s \le l \le n$ and $i_s \ge \epsilon \ge 0$ then

$$E_{((x_1^{i_1}\cdots x_l^{i_l}))}(f) \leq n! E_{((x_1^{i_1}\cdots x_r^{i_r+\epsilon}\cdots x_s^{i_s-\epsilon}\cdots x_l^{i_l}))}(f) \ .$$

2. For any $\mu > 0$, $r \ge 1$ we have

$$E_{\Phi} \le \frac{1}{\mu^{r-1}} E_{\Phi^r} + \mu \operatorname{vol} M .$$

Proof: Let $a_1(x) \ge a_2(x) \ge ... \ge a_n(x)$ be the eigenvalues of $d_x f^* d_x f$, $x \in M$. Now

$$E_{((x_1^{i_1} \cdots x_l^{i_l}))}(f) = \int_M \sum_{\pi \in S_n} a_{\pi 1}^{i_1} \cdots a_{\pi r}^{i_r} \cdots a_{\pi s}^{i_s} \cdots a_{\pi l}^{i_l}$$

$$\leq n! \sum_{\pi \in S_n} \int_{a_{\pi 1} \ge \dots \ge a_{\pi l}} a_{\pi 1}^{i_1} \cdots a_{\pi r}^{i_r} \cdots a_{\pi s}^{i_s} \cdots a_{\pi l}^{i_l}$$

$$\leq n! \sum_{\pi \in S_n} \int_{a_{\pi 1} \ge \dots \ge a_{\pi l}} a_{\pi 1}^{i_1} \cdots a_{\pi r}^{i_r + \epsilon} \cdots a_{\pi s}^{i_s - \epsilon} \cdots a_{\pi l}^{i_l}$$

$$\leq n! E_{((x_1^{i_1} \cdots x_r^{i_r + \epsilon} \cdots x_s^{i_s - \epsilon} \cdots x_l^{i_l}))}(f)$$

For the second claim we decompose the domain of integration to estimate

$$\int_{M} \Phi(df^{*}df) \leq \int_{\{x|\Phi(d_{x}f^{*}d_{x}f)>\mu\}} \frac{\Phi(df^{*}df)^{r}}{\mu^{r-1}} + \int_{\{x|\Phi(d_{x}f^{*}d_{x}f)\leq\mu\}} \mu$$

$$\leq \frac{1}{\mu^{r-1}} E_{\Phi^{r}} + \mu \text{vol} M .$$

We denote by $\sigma_l(A)$ the lth elementary symmetric polynomial in in the eigenvalues of a matrix A. It is determined by the identity $\det (1 + \lambda A) = \sum_l \sigma_l(A) \lambda^l$. If Φ and Ψ are homogeneous polynomials with $l(\Psi) \leq l(\Phi) = l$ then there are constants $\widetilde{C} = \widetilde{C}(\Psi, \Phi, n)$ and $C = C(\Phi, n, l)$ such that

$$\widetilde{C}CE_{\Psi}(f) \ge CE_{\Phi}(f) \ge E_{\sigma_l^{n/2l}}(f)$$

for all f.

3 Statement of Results

Theorem 3.1 Let ϕ have degree d and let $L \subset M$ be a submanifold of codimension q with q > d. If $f, g: M \to V$ are homotopic on $M \setminus L$ then $\widetilde{E}_{\phi}(f) = \widetilde{E}_{\phi}(g)$.

For instance in order to compute W(f) we may modify f in a tubular neighbourhood of a submanifold L of codimension at least 5. Even more specifically $\widetilde{W}(f) = 0$ for any map $S^n \to V$ if $n \geq 5$. It was proved by B. White in [6], see also Pluzhnikov [3], that for functionals of order 1 the same holds if f and g are homotopic on a (q-1)-skeleton of M with q > d, i.e. outside a skeleton of codimension q > d.

Theorem 3.2 Assume that $\phi(A) \geq \sigma_l(A^*A)^{n/2l}$ and that $\widetilde{E}_{\phi}(f) = 0$. Then f induces 0 in (co)homology groups of degree $\geq l$.

The following proposition shows that the assumptions of theorem 3.2 do not in general imply that f is homotopic to a map to $\tilde{f}: M \to V^{l-1} \subset V$.

Proposition 3.3 Let n=m+m', k=l+l', $g:S^m\to S^l$, $g':S^{m'}\to S^{l'}$ and $f=g\times g':S^m\times S^{m'}\to S^l\times S^{l'}$. Assume that r< m/2l or r< m'/2l'. Then $\widetilde{E}_{\phi}(g\times g')=0=\widetilde{E}_{\phi}(g\wedge g')$ for $\phi=\sigma_k^r$ where $g\wedge g':S^{m+m'}=S^m\wedge S^{m'}\to S^{l+l'}$ denotes the smash product of g and g'. In particular if $g:S^{n-1}\to S^{k-1}$ and $f=Sg=g\wedge id:S^m\to S^k$ is the suspension of g then $\widetilde{E}_{\phi}(f)=0$ for $\phi=\sigma_k^r$ if r<(n-1)/2(k-1).

Proof: For the cartesian product $f = g \times g'$ we get

$$df^*df = \begin{pmatrix} dg^*dg & 0\\ 0 & dg'^*dg' \end{pmatrix} ,$$

$$\sigma_k(df^*df) = \sigma_l(dg^*dg)\sigma_{l'}(dg'^*dg')$$

and

$$\widetilde{E}_{\phi}(f) = \widetilde{E}_{\sigma_l^r}(g)\widetilde{E}_{\sigma_{l'}^r}(g')$$
.

If r < m/2l or r < m'/2l' then one of the factors vanishes by [6] or theorem 3.1, hence $\widetilde{E}_{\sigma_{i}^{r}}(f) = 0$.

The assertion about the smash product follows from that for the cartesian product. We deform g and g' to maps which are constant on some open sets $U \subset S^m$ and $U' \subset S^{m'}$ containing the base points. The projection $\pi \colon S^m \times S^{m'} \to S^m \wedge S^{m'}$ and its inverse have bounded differential over $S^m \setminus U \times S^{m'} \setminus U'$. Hence we can estimate

$$E_{\phi}(g \wedge g') = \int_{\pi(S^m \setminus U \times S^{m'} \setminus U')} \sigma_k^r(g \wedge g') \leq C \int_{S^m \setminus U \times S^{m'} \setminus U'} \sigma_k^r(\pi' \circ (g \times g'))$$

$$\leq C \int_{S^m \times S^{m'}} \sigma_k^r(g \times g') = CE_{\sigma_{l'}^r}(g \times g')$$

where $\pi': S^l \times S^{l'} \to S^l \wedge S^{l'}$.

The generator of $\pi_4(S^3) \cong \mathbb{Z}/2$ is the suspension of the Hopf map $\eta: S^3 \to S^2$. Hence $\widetilde{E}_{\sigma_3^r}(s\eta) = 0$ for r < 3/4 but the conformal power is r = 2/3.

4 Proof of Theorem 3.1

Let R be small enough such that the exponential map restricted to the R-disc bundle of the normal bundle of L is a diffeomorphism, i.e. the map

$$RD\nu(L) \rightarrow U_R(L) := \{x \in M \mid d(x, L) \le R\}$$

 $v \in \nu_p(L) \mapsto \exp_p(v)$.

We will write $\rho(x) = d(x, L)$ for the distance from L and $\mu(r, x) = \exp_p(rv)$ for $x = \exp_p(v) \in U_R(L)$ and $r \leq R/\rho(x)$. Let $0 < \alpha < \beta = 2\alpha < \epsilon = 3\alpha < R$ and choose smooth functions $\chi \colon [0, R] \to [0, 1]$ and $\psi \colon [0, R] \to [0, R/\alpha]$ such that $\chi(x) = 0$ for $x \in [0, \alpha], \ \chi(x) = 1$ for $x \in [\beta, R], \ \chi' \geq 0$ and $\psi(x) = R/\alpha$ for $x \in [0, \alpha], \ \psi(x) = 1$ for $x \in [\epsilon, R], \ \psi' \leq 0$ and $R/x \geq \psi(x) \geq R/2x$ for $x \in [\alpha, \beta]$. If the functional in question has order r we also require that for the derivatives $\chi^{(j)}$ and $\psi^{(j)}$, $j = 0 \dots r$, we have that $|\chi^{(j)}(x)| \leq C/\alpha^j$ and $|\psi^{(j)}| \leq C/\alpha^{j+1}$. Here and in the sequel C denotes a suitable constant independent of α . Denote by π the map $M \to M \times [0,1]$ given by

$$\pi(x) := (\mu(\psi(\rho(x)), x), \chi(\rho(x))) .$$

Note that the image of π is contained in the compact set

$$K := M \times \{1\} \cup M \setminus U_{R/2}(L) \times [0,1] \cup M \times \{0\}$$
.

Let $H: K \to V$ be a smooth homotopy between $f = H|_{M \times \{0\}}$ and $g|_{M \times \{1\}}$ outside L. The map h defined by $h(x) := H(\pi(x))$ is homotopic to f and coincides with g on $M \setminus U_{\epsilon}(L)$. Thus

$$\widetilde{E}_{\phi}(f) - \widetilde{E}_{\phi}(g) = \widetilde{E}_{\phi}(h) - \widetilde{E}_{\phi}(g) = \int_{U_{\epsilon}} \phi(\nabla h, \dots, \nabla^r h) - \int_{U_{\epsilon}} \phi(\nabla g, \dots, \nabla^r g) .$$

For the proof of the theorem it suffices to show that the energy of h on $U_{\epsilon}(L)$ can be made arbitrarily small by choosing α appropriately. So we need to estimate the (covariant) derivatives of order $\leq r$ of h. Up to some constants depending on the derivatives of H on the compact set K we have to estimate $\nabla^{j}\pi$, $j=1\ldots r$. At $p \in L$ we use a chart ξ of $U_{R}(L)$ mapping L to $\mathbb{R}^{n-q} \times \{0\}$, preserving ρ , i.e. $\xi(z) = (x, y)$ with $\rho(z) = |x|$, and such that $\xi(\mu(r, z)) = (rx, y)$. Up to constants depending on derivatives of ξ we have to estimate the derivatives of

$$(x,y) \mapsto (\psi(|x|)x, y, \chi(|x|))$$
.

A straightforward calculation shows that

$$\nabla^{j} \chi(|x|) = \sum_{i=1}^{j} \chi^{(i)}(|x|) \mathcal{O}(1/|x|^{j-i}) ,$$

$$\nabla^{j} \psi(|x|) x = \sum_{i=1}^{j} \psi^{(i)}(|x|) \mathcal{O}(1/|x|^{j-i-1}) .$$

Hence

$$||\nabla^j \chi(|x|)|| \le C\alpha^{-j}$$
 and $||\nabla^j (\psi(|x|)x)|| \le C\alpha^{-j}$.

Therefore we can estimate $\nabla^j \pi$ by α^{-j} and the energy integral by

$$E_{\phi}(h|_{U_{\epsilon}(L)}) = \int_{U_{\epsilon}(L)} \phi(\nabla h, \dots, \nabla^{r} h)$$

$$\leq \text{vol}U_{\epsilon}(L)C(1 + |\nabla h|^{d} + \dots + |\nabla^{r} h|^{d/r})$$

$$\leq C\epsilon^{q}\alpha^{-d} = C3^{q}\alpha^{q-d}$$

If q > d then this tends to 0 for $\alpha \to 0$.

5 Proof of Theorem 3.2

Let M^q , V^q denote the q-skeleta of smooth triangulations of M and V respectively. By the Deformation Theorem of geometric measure theory, [1], we can deform the restriction $f|_{M^q}$ of f to a Lipschitz map \tilde{f} mapping M^q to V^q such that for the q-dimensional Hausdorff measures \mathcal{H} we have

$$\mathcal{H}^q(\tilde{f}(M^q)) \le C_1 \mathcal{H}^q(f(M^q))$$

where C_1 does not depend on f.

It suffices to consider the case $\Phi = \sigma_l^{n/2l}$. We choose an embedding of the tangent bundle $TM \hookrightarrow M \times \mathbb{R}^s$ into a trivial bundle of rank s. Let π be the orthogonal projection $M \times \mathbb{R}^s \to TM$. Chose ϵ small enough so that $\Psi_v : m \mapsto \exp_m(\pi v)$ is a diffeomorphism of M for all $v \in D^s = \{v \in \mathbb{R}^s \mid |v| \le \epsilon\}$. Also let $U_{\epsilon}M^q$ denote the image of $M^q \times D^s$ under the map $\Psi: (m, v) \mapsto \exp_m(\pi v)$. Let $f_v(m) = f(\exp_m(\pi v))$. We denote by $e_{\Phi}(f) = \Phi(df^*df)$ the energy density and apply the transformation formula to the submersion $\Psi: M^q \times D^s \to U_{\epsilon}M^q$. Let $J_n\Psi$ be the n-Jacobian of this map,

$$C_2 = \frac{1}{\max_{z \in U_{\epsilon}M^q} \mathcal{H}^{s+q-n}(\Psi^{-1}(z))}$$

and

$$C_3 = \frac{\min_{M^q \times D^s} J_n \Psi}{\max_{z \in U_\epsilon M^q} \mathcal{H}^{s+q-n}(\Psi^{-1}(z)) \max_{m,v} |d_m \psi_v^* d_m \psi_v|^{n/2}},$$

where $|d_m \psi_v^* d_m \psi_v|$ denotes the operator norm of $d_m \psi_v^* d_m \psi_v$ for $m \in M^q$, $v \in D^s$, i.e. its largest eigenvalue. Then

$$E_{\Phi}(f) \geq \int_{U_{\epsilon}M^{q}} e_{\Phi}(f)$$

$$\geq C_{2} \int_{U_{\epsilon}M^{q}} e_{\Phi}(f) \mathcal{H}^{s+q-n}(\Psi^{-1}(z)) dz$$

$$= C_2 \int_{M^q \times D^s} e_{\Phi}(f)(\Psi(y)) J_n \Psi(y) dy$$

$$\geq C_2 \min_{M^q \times D^s} J_n \Psi \int_{M^q \times D^s} e_{\Phi}(f)(\Psi(y)) dy$$

$$= C_2 \min_{M^q \times D^s} J_n \Psi \int_{D^s} \int_{M^q} e_{\Phi}(f)(\Psi_v(m)) dm dv$$

$$\geq C_3 \int_{D^s} \int_{M^q} e_{\Phi}(f \circ \Psi_v) dm dv . \tag{5.1}$$

Assume that $E_{\Phi}(f) \leq \delta$ for some δ . By (5.1) we find $v \in D^s$ such that

$$\int_{M^q} e_{\Phi}(f_v|_{M^q})(m)dm \le \delta/C_3.$$

From proposition 2.1 there is a constant C_4 such that

$$\mathcal{H}^{q}(f_{v}(M^{q})) = E_{\sigma_{q}^{1/2}} \leq C_{4} E_{\sigma_{l}^{q/2l}} \leq C_{4} \left(\frac{1}{\mu^{n/q-1}} E_{\sigma_{l}^{n/2l}} + \mu \text{vol} M \right)$$

$$\leq C_{4} \left(\frac{1}{\mu^{n/q-1}} \delta / C_{3} + \mu \text{vol} M \right)$$

for any $\mu > 0$ provided $q \ge l$. Choosing δ and μ appropriately we can achieve that this is strictly less than the volume of the smallest q-cell of V^q . Thus we get a map \tilde{f}_v homotopic to f which maps M^q to V^q and misses a point in every q-cell of V^q . Therefore it is homotopic to a map $M^q \to V^{q-1}$.

References

- [1] Federer, H. Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften 153, Springer-Verlag, 1969.
- [2] Gromov, M. Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152, Birkhuser, 1999
- [3] Pluzhnikov, A. I. Topological aspects of the problem of minimizing the Dirichlet functional Proc. Steklov Inst. Math. 1993, no. 3 (193), 167–171
- [4] Rivière, T. Minimizing fibrations and p-harmonic maps in homotopy classes from S^3 into S^2 , Comm. Anal. Geom. 6 (1998), no. 3, 427–483.
- [5] Sullivan, D. *Infinitesimal computations in topology*, Inst. Hautes tudes Sci. Publ. Math. No. 47 (1977), 269–331.
- [6] White, B. Infima of energy functionals in homotopy classes of mappings, J. Differential Geom. 23 (1986), no. 2, 127–142.