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Abstract. We show how far the local defect index determines the behaviour of
an ordered medium in the vicinity of a defect.

1. Introduction

A rough model for an ordered medium may be constructed by a manifold M
encoding the positions of the particles in space and a map M → V from M
to the so-called order parameter space V or, more generally, a section σ :
M → E in some fibre bundle E over M with typical fibre V , which describes
additional degrees of freedom. We are interested in the consequences imposed
on this situation merely by topology, i.e. by continuity assumptions on σ only.
In general a bundle E → M does not admit a section on all of M but only on

the complement M \ ∆̃ of some defect ∆̃ ⊂M . Even if the bundle is trivial there

may occur defects ∆̃ which can not be removed by changing σ in the vicinity of

∆̃ only.
In a variety of examples the defect set is a submanifold (see e.g. [4]). In

this case the section is called regularly defected. In the present investigation

regularity will be tacitly assumed. An arc component ∆ ⊂ ∆̃ of the defect then
has a well defined normal bundle N → ∆, and the behaviour of σ in the vicinity
of this defect component is described by the restriction of σ to the sphere bundle
SN of N , i.e. by a bundle map σ : SN → E|∆.

Definition 1. The local defect index of a regularly defected cross section at

p ∈ ∆̃ is the homotopy class ιp(σ) := [σp] ∈ [SNp, Ep], where σp : SNp → Ep

denotes the restriction of σ to the fibres over p ∈ ∆̃.
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A regularly defected cross section is called topologically stable, if for every

arc component ∆ ⊂ ∆̃ the local defect index ιp(σ) at some (hence every) point
p ∈ ∆ is nontrivial.

The main objective of this work is to show that the local defect index does not
in general suffice to determine the global behaviour of a defect mapping along
the defect component ∆. This is more precisely described by the fibre homotopy
class of σ over ∆, which we will refer to as the global defect index of σ. Recall
that two mappings σ0, σ1 : SN → E|∆ over ∆ are called fibre homotopic, if
there is a homotopy H between them consisting of mappings Ht which commute
with the projections of the two bundles. By [SN,E]∆ we denote the set of fibre
homotopy classes of mappings SN → E|∆ over ∆ and by [SN,E]α∆ the set of
fibre homotopy classes of maps σ : SN → E|∆ over ∆, whose local defect index
at p ∈ ∆ equals a given α ∈ [SNp, Ep].

In the examples we have in mind we may assume that the normal bundle
as well as E are trivial. Nontrivial bundles are treated in [1]. There is a long
exact sequence involving the Whitehead product (Theorem 1), from which the
set [SN,E]α∆ can be computed by dividing out the action of the fundamental
group of the mapping space Mapα(Sn−1, V ) of the fibres, see (1). As examples
we explicitly treat nematics (Proposition 1), the superfluid dipolefree A-phase
3He (Proposition 2), and (in Proposition 3) the case where V is an H-space — a
Lie group for instance. The latter appears in the theory of the superfluid dipole
locked A-phase of 3He where V = SO(3). In the case of nematics (see also [3])
there are 4 different types of global defect indices sharing the only nontrivial
local defect index. In the other cases above even infinitely many global defect
indices with the same local defect index occur.

Single unknotted ring defects in R
3 were considered in [9]. The configurations

with only one unknotted ring defect are described by the set [R3 \ S1, V ] =
[S2 ∨ S1, V ] = π2(V ) × π1(V )/θ where θ is the action of π1(V ). Our treatment
admits other defects but identifies configurations which are homotopic near the
defect component ∆. Thus we are interested in the set [S1 × S1, V ], which we
compute from the long exact sequence of Theorem 1. After dividing out the
action of π1(V ), this is related to [S2 ∨ S1, V ] by an exact sequence

π2(V ) → [S2 ∨ S1, V ]bp → [S1 × S1, V ]bp → π1(V ) ,

where [·, ·]bp denotes homotopy classes, relative basepoint.

Acknowledgement. We are grateful to Prof. Jänich for suggesting the present investigation
and for many inspiring discussions.

2. The Whitehead-Sequence

Let SN := ∆× Sn−1 and E := ∆× V be trivial bundles. The Exponential Law
(see e.g. [2], p. 438) gives us a canonical bijection

[∆× Sn−1, ∆× V ]∆ → [∆,Map(Sn−1, V )]

between the set of fibre homotopy classes of mappings SN → E and a set of
ordinary homotopy classes. Here we denote by Map(X,Y ) the mapping space
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equipped with the compact-open topology. We will sometimes write Mapα(X,Y )
instead of α for the arc-component of any (hence every) representative of a class
α ∈ [X,Y ].

Let us take a closer look at the case ∆ = Sm. If we consider a fixed local
defect index α as an element in [Sn−1, V ] we now know that after choosing
basepoints we have a canonical bijection

[Sm × Sn−1, Sm × V ]αSm ≈ πm(Mapα(Sn−1, V ))/π1(Mapα(Sn−1, V )) , (1)

where the right-hand side is the quotient of the canonical action of the funda-
mental group π1(Mapα(Sn−1, V )) on the higher homotopy group of this space.
In order to calculate the set [Sm × Sn−1, Sm × V ]αSm we therefore have to de-
termine the mth homotopy group of the mapping space Mapα(Sn−1, V ) and the
action of its fundamental group. The first part was done by G. W. Whitehead
in [12] and we will summarize his results:

Let s0 ∈ Sn−1 and v0 ∈ V be the basepoints and let Fα denote the subspace
Mapα((Sn−1, s0), (V, v0)) of basepoint preserving mappings homotopic to α ∈
πm(V, v0). Then the evaluation map

τα : Gα := Mapα(Sn−1, V ) → V

f 7→ f(s0)

is a Hurewicz-fibration with fibre Fα and so induces the long exact homotopy
sequence

· · · → πm+1(V )
∂

−→ πm(Fα) → πm(Gα) → πm(V ) → · · · . (2)

The homeomorphism Sm ∧ Sn−1 ∼= Sm+n−1 induces an isomorphism

ϕα : πm(Fα) ∼= πm+n−1(V ) . (3)

The composition

πm+1(V )
∂

−→ πm(Fα)
ϕα

−→ πm+n−1(V )

is the Whitehead product from the left with α ([12]). Inserting this into the
sequence (2) we obtain the following result.

Theorem 1 (G.W.Whitehead). If ρα : πm+1(V ) → πm+n−1(V ), β 7→ [α, β]
denotes the Whitehead product with α ∈ πn−1(V ), we have the following long
exact sequence:

· · · → πm+1(V )
ρα

−→ πm+n−1(V ) → πm(Mapα(Sn−1, V )) → πm(V ) → · · · .
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3. Applications

We now want to give some applications of Theorem 1 of physical importance. For
this we consider regularly defected cross sections of the trivial bundle S3 ×V →

S3 with a defect set ∆̃ := ∆1 ∪ . . . ∪∆r ∪ p1 ∪ . . . ∪ ps consisting of connected
closed 1-dimensional submanifolds ∆i ⊂ S3 and points pj ∈ S3. Such a regularly

defected cross section is just a continous mapping S3 \ ∆̃ → V to the order
parameter space V . The physical interpretation is that this mapping defines an
ordering of the considered medium, continuous everywhere except at the defect

set ∆̃.
In order to study the behaviour of such a mapping at a defect component

∆ ∼= S1 we consider the induced mapping σ : SN → ∆ × V from the sphere
normal bundle SN → ∆ of ∆ ⊂ S3 and its fibre homotopy class, as we have done
before. If we require its orientability then the bundle SN → ∆ is automatically
trivial and hence we can restrict ourselves to the case SN = S1 × S1 → S1.
Thus the desired homotopy classes will be elements of [S1 × S1, V ]. We shall
denote by [S1 × S1, V ]∗ the subset of all those classes whose restriction to the
fibre S1 × 1 is nontrivial.

3.1. Nematics. Consider the case V := RP
2. This is the order parameter space

for nematic liquid crystals and in this situation we have the following result that
can also be found in [3] where a different proof is given:

Proposition 1. We have

#[S1 × S1,RP
2]∗ = 4 . (4)

Proof. From π1(RP
2) = Z2 we know that [S1,RP

2] has two elements and there-
fore we have [S1×S1,RP

2]∗ = [S1×S1,RP
2]α ≈ π1(Mapα(S1,RP

2))/ ∼, where
α ∈ [S1,RP

2] denotes the nontrivial element and the right-hand side of the equa-
tion denotes the quotient of the conjugation operation of the fundamental group
on itself. But the group π1(Mapα(S1,RP

2)) may be found in the exact sequence
of Theorem 1

π2(RP
2)

ρ2

α→ π2(RP
2) → π1(Mapα(S1,RP

2)) → π1(RP
2)

ρ1

α→ π1(RP
2) → . (5)

The action of π1(RP
2) on π2(RP

2) is nontrivial. We have ρ2
α(β) = α ·β−β =

−2β for every β ∈ π2(RP
2). At the right end of the diagram the groups are

abelian. Hence the Whitehead product ρ1
α is trivial.

Thus (5) yields the exact sequence

Z
·(−2)
−→ Z → π1(Mapα(S1,RP

2)) → Z2 → 0 ,

which gives immediately that #π1(Mapα(S1,RP
2) = 4. As every group with

four elements is abelian, the number of elements does not change when passing
to free homotopy classes and the assertion is proved. ⊓⊔

These four homotopy classes can be explicitly described as follows (see [3]).
For any ζ ∈ S1 we denote by [ζ] ∈ RP

2 its image under the mapping S1 →֒

S2 π
→ RP

2. For k = 0, . . . , 3 let



Global Defect Index 5

ψk : S1 × S1 → RP
2

be the mapping induced by

[0, 1] × [0, 1] → RP
2 , (t, s) 7→ [eπi(t+ks)] .

We claim that

[S1 × S1,RP
2]∗ = {[ψk] | k = 0, . . . , 3} .

Proof. When restricted to S1 × 1 each ψk represents the nontrivial class α ∈
π1(RP

2), so that [ψk] ∈ [S1 × S1,RP
2]∗ for all k = 0, . . . , 3. Clearly

[ψ0|1×S1 ] = [ψ2|1×S1 ] = 0 ∈ π1(RP
2) ,

and

[ψ1|1×S1 ] = [ψ3|1×S1 ] = α ∈ π1(RP
2) .

Considered as elements of π1(Mapα(S1,RP
2)) the ψk satisfy [ψ3] = [ψ2] + [ψ1]

and [ψ1] = [ψ0] + [ψ1]. It suffices therefore to prove that [ψ0] 6= [ψ2].
A straightforward calculation shows that the homomorphism

π2(RP
2)

ι
→ π1(Mapα(S1,RP

2))

maps 0 to [ψ0] and the generator of π2(RP
2) to [ψ2]. From the exactness of the

sequence (5) we infer [ψ0] 6= [ψ2]. ⊓⊔

3.2. Superfluid dipolefree A-phase 3He. Here we have to consider the order
parameter space V := S2 ×Z2

SO(3), where the generator of Z2 acts on S2 by
reversing the sign and on SO(3) via




a1 b1 c1
a2 b2 c2
a3 b3 c3


 7→




−a1 −b1 c1
−a2 −b2 c2
−a3 −b3 c3




(see [5-7]).
The first two homotopy groups of V are (see [8]) :

π1(V ) = Z4 and π2(V ) = Z .

As π1(V ) is abelian, we can consider the local defect index α ∈ [S1, V ] as an
element of π1(V ). We have the fibration

p : V = S2 ×Z2
SO(3) → RP

2

associated to the Z2-principal fibration S2 → RP
2. Its homotopy sequence yields

that the induced homomorphism

(i) p∗ : π2(V ) → π2(RP
2) is injective and

(ii) p∗ : π1(V ) → π1(RP
2) is surjective.
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Since the operation of the fundamental group on the higher homotopy groups is
natural we have the following equation for the action of a generator ι ∈ π1(V ) ∼=
Z4 on an arbitrary β ∈ π2(V ) ∼= Z:

p∗(ι · β) = p∗(ι) · p∗(β) = (−1) · p∗(β) = −p∗(β) = p∗(−β) .

From (i) we deduce that ι·β = −β and therefore we have calculated the operation
of the fundamental group of V on π2(V ) as follows:

π1(V ) × π2(V ) → π2(V )
(ιk , β) 7→ (−1)kβ

and so we are able to prove the following

Proposition 2. Let V := S2×Z2
SO(3) and let ι be the generator of π1(V ) ∼= Z4.

If we denote by [S1 × S1, V ]ι
k

the set of homotopy classes of mappings whose
restrictions to S1 × 1 equal ιk , k ∈ Z4 then we have the following two cases:

(i) For k = 1, 3 mod 4 we have #[S1 × S1, V ]ι
k

= 8,

(ii) for k = 0, 2 mod 4 we have #[S1 × S1, V ]ι
k

= ∞.

Proof. For the local defect index α := ιk we have the exact sequence

π2(V ) → π2(V ) → π1(Mapα(S1, V )) → π1(V ) → π1(V )
β 7→ α · β − β β 7→ α · β − β

which becomes

Z
ρ
→ Z → π1(Mapα(S1, V )) → Z4

0
→ Z4 ,

where ρ = (−2) in case (i) and ρ = 0 in case (ii). In the first case it follows that

π1(Mapα(S1, V )) is abelian and the set [S1 ×S1, V ]ι
k

= π1(Mapα(S1, V )) has 8
elements. In the second case it must have infinitely many conjugacy classes and
the proposition is proved. ⊓⊔

3.3. H-Space as Fibre. We now assume ∆ = Sm and that the fibre V of E is
an H-Space. Recall that on an H-space all the Whitehead products vanish. In
particular the action of the fundamental group on the higher homotopy groups
is trivial, so that we may regard the local defect index as an element in πn−1(V ).
The following is immediate from Theorem 1.

Proposition 3. If V is an H-space, then for every α ∈ πn−1(V ) we have the
equation

#πm(Mapα(Sn−1, V )) = #πm+n−1(V ) · #πm(V ) .

As a concrete example let V = S3 and assume n = 4, such that SN also
has S3 as its fibre. For the number of possible fibre homotopy classes with local
defect index 1 ∈ π3(S

3) we have:

Proposition 4. For every m ∈ N we have

#[Sm × S3, Sm × S3]1Sm = #πm(S3) · #πm+3(S
3) .

Especially for m 6= 3 we get that

#[Sm × S3, Sm × S3]1Sm <∞ .
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Proof. From Proposition 3 we know that

#πm(Map1(S
3, S3)) = #πm(S3) · #πm+3(S

3) .

There is a 1-1 correspondence

[Sm × S3, Sm × S3]1Sm ≈ πm(Map1(S
3, S3))/π1(Map1(S

3, S3)) .

Hence the first assertion follows from the fact that Map1(S
3, S3) is also an H-

space and thus the action of its fundamental group on the mth homotopy group
is trivial. From [11] we know that the groups πm(S3) are all finite except for
m = 3 and therefore the second assertion is proved as well. ⊓⊔

With the help of Table A.3.6 in [10] we obtain the following list:

m 1 2 3 4 5 6 7 8 . . .

#[Sm × S3, Sm × S3]1Sm 2 2 ∞ 4 4 36 30 4 <∞
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