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Abstract

To a topological space V we assign the bordism group M9 (V) of reg-
ularly defective maps f: Mo—V on closed n-dimensional manifolds M.
These are triples (M, A, f) where A is a closed submanifold A C M and
f a continuous map f: M N A — V.

We briefly review the construction of the defect complex DV given by
M. Rost in [17] and show that 93¢ (V) is isomorphic to ordinary bordism
MN,(DV). The bordism classes in M (V) = N, (DV) are detected by
characteristic numbers twisted with cohomology classes of DV'. Some of
these numbers can be described without reference to the defect complex.
As an example we treat the case of the circle V = S'. We compute
Mndef(S1), construct a basis and a complete set of characteristic numbers.

1 Introduction

By a regularly defective map we mean a triple (M, A, f) consisting of a
compact manifold M, a closed submanifold A C M and a continuous map
f: M~ A —V into a topological space V. We additionally require that A
be transverse to the boundary M of M. Usually the defect set A will be
suppressed in the notation and we will write f: Mo—V.

Initially, interest in defective maps arose from the physics of ordered me-
dia, where M is thought of as the coordinate space of a collection of particles,
e.g. a domain in R3 cf. [11], [12] or [15]. A map f: M ~ A — V encodes
some additional piece of information like the orientation of the particles. Fa-
mous examples are axial or biaxial nematics, superfluid *He, see [1], [7], [10],
[13]. Physicists also have considered some invariants distinguishing topolog-
ically different defective maps f. Probably the simplest ones are obtained



by considering the homotopy class of the restriction of f to a tubular neigh-
bourhood of the defect set, in particular the defect indices considered in [11],
[14], and [1], [2].

We consider the natural notion of bordism on such maps: Two regularly
defective maps f: Mo—V and f’: M'o—V with defect sets A, A" are bordant
if there is a regulary defective map F': Wo—V with defect set I' such that

1. oW = MUM,
2. OI' = AUA’ and
3. F‘M:f, F|M’:f,'

Taking disjoint union defines an addition on the set of equivalence classes.
We obtain the bordism group of regularly defective maps on n-dimensional
manifolds which we denote by M3 (V). If V = * consists of a point only we
get bordism of pairs, which will be considered below.

Let f: Mo—V be a regularly defective map with defect set A and fix a
component Ay C A. Consider the restriction of f to the sphere bundle SN
of the normal bundle N of A. Choosing a fibre SN, of SN|a,, © € Ay,
and a homeomorphism h: S¥ = SN, we get a map f o h: S¥ — V. On the
set [S*, V] of homotopy classes of maps S* — V we have an involution +
induced by reversing the orientation of S*. The local defect index of f at the
component Ay is the class t(f, Ag) = [foh] € [S*,V]/+. Tt does not depend
on the choice of x and h. Up to sign it is the primary obstruction to extending
f over all of Ay, cf. [3]. Regularly defective maps with ¢(f, Ag) # 0 for each
component Aq of the defect set are called topologically stable in the physics
literature. In this case the defect can not be diminished by deformation, i.e.
f is not homotopic to a map extending to a superset of M . A.

We will also include the local defect index in the bordism groups. For
a prescribed subset A C |J,[S*,V]/%, a A-defective map f: Mo—V is a
regularly defective map all of whose local defect indices are contained in A.
Requiring the maps F', f’ and f in the above definition to be A-defective
leads to the bordism groups MdebA (V).

In [17] M. Rost constructs the representing space DAV for the set
Dx(M, V) of concordance classes of A-defective maps Mo—V by suitably
enlarging V' such that each A-defective map f: Mo—V induces a con-

tinuous map F: M — DpV, cf. section 2. He obtains a bijection
DA(M,V) — [M,D\V]. We do not need this result here but rely on



the corresponding statement for bordism. Along the lines of [17] we ob-
tain in section 2 a natural identification DMILA(V) = 9, (DAV). Since
N (DaAV) = D Ni(*) @ Hyj(DAV, Zy), cf. [4], the A-defective bordism

groups can then be computed from the Zs-homology of the defect complex.

The bordism class of a regularly defective map f: Mo—V is determined
by the characteristic numbers

(wr(M) « F*a, [M]) (1.1)

where a € H*(DAV) and F': M — D,V extends f. In section 3 we describe
some of these geometrically, i.e. without reference to the defect complex. For
fixed A € A we denote by AW the union of those components of A with local
defect index A and by N® and SN® the corresponding bundles over AM
We consider two types of characteristic numbers for regularly defective
maps. First, omitting the map f defines for each A € A a natural map
NAEA (V) — Mot (x) = 9P (M A f: MNA — V] [M, AM] to bordism
of pairs. By Theorem 1 in [19] this is completely described by the Stiefel-
Whitney numbers (w;(TM),[M]) of M and the characteristic numbers

Dara(f) = (wi(A) « ws(N),[AV]) .

Second we can restrict the map f to the sphere bundle 7: SN — A of
the normal bundle of the defect set. From the splitting TSN® = m*TAN ¢
TrSN® we construct the characteristic numbers

Inars(f) = (wi(A) ~ ws(N) ~ fo, [SNV))
for a € H*(V).

Section 4 deals with regularly defective bordism of the circle V = S*.
In Theorem 4.1.1 we calculate the (co)homology of D, (S') and thereby
NALA(SY). A basis for MLEA(ST) is given in section 4.2. For V = St
the 354.7(f) are determined by the 9, ;s(f). Nonetheless we obtain a
complete set of geometrically defined characteristic numbers for 9deH-4(S1),
A C Z ~ 0 in Theorem 4.3.1.

The bordism groups of normal coverings with Galois group Z are N, (S!).
Analogously 91%{(S1) may be identified with cobordism of regularly branched
Z-coverings. These are branched coverings X — M in the sense of [6] with the
following additional properties: First they are required to have a submanifold
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A of M as branching, or “singular” set. Second they are to carry an action
of the integers Z on X which is transitive and free on the fibres over M ~\ A.
It is shown in [6] that, via completion, branched coverings g : X — M with
singular set A biuniquely correspond to unbranched coverings over M ~ A.
Taking the classifying map f: M ~ A — S = BZ relates these to defective
maps to St

A similiar calculation is performed in [16] for V' = RP*, thus producing a
branched analogue to the computation of line field cobordism by Koschorke,
[9]. Tt turns out that [f: Mo—RP™] € MILA(RP>) is determined by the
bordism class of M and the 35 ..71.5(f)-

Finally in section 5 we compute the invariants 3 ,.;s(f) for some exam-
ples showing that in general they give information neither contained in the
local defect index nor in the characteristic numbers of bordism of pairs.

We are grateful to Prof. K. Janich for inspiring this research and to the
referee for many valuable hints and suggestions.

2 The Defect Complex

We review the construction in [17] of the defect complex DV of a topological
space V. Let A C J,—;[S¥, V]/+ which we sometimes view as a Zy-invariant
subset A C (J,—,[S*,V]. Let EO(k) — BO(k) denote the universal O(k)-
bundle and v* = EO(k) X o5y R* the universal vector bundle. We endow the
set C(S*=1, V) of continuous maps S*~! — V with the compact-open topol-
ogy and the O(k)-action (g, f) — fog ! for g € O(k) and f € C(S* 1, V).

Let Cz(S*¥71 V) be the subspace of maps with homotopy class in A.
For a k-dimensional R-vector bundle N — A we consider the associated
Ca(S*1, V)-bundle

CA(SN, V) = ] Ca(SN,, V) = Pou(N) xom Ca(S¥,V) = A,
TEA

where Poy(N) — A is the orthonormal frame bundle of N. Let

ﬂ_k
Ak = C\(SY", V) = EO(k) xo@y CA(S*1, V) = BO(k)

denote the classifying O (S*~1 V)-bundle. Then Cy(SN,V) = v*Ak for a
classifying map v: A — BO(k).



Denote by E§ = (7§)*y* the pull-back of v* to Ak and let DEX, SE%
denote its disc respectively sphere bundle. The fibre of SEX over a point ¢ €
BO(k) is canonically (S7%), x Ca((57%),, V). Hence we have the evaluation
map a’f\: SEﬁ — V. We let Ap, Ep, DE), SE\, a denote the union over
all £ > 1 of the corresponding objects and use a, to glue

DAV = DEyU,, V .

This set DAV is called the A-defect complex and A, the universal defect set.

Two A-defective maps f;: Mo—V, i = 0,1 are concordant if there is a A-
defective map f: M x[0, 1Jo=V extending f;: M x{i}o—=V. If F: M — D,V
is transverse to the universal defect set A (i.e. the induced section of F*FE'
is transverse to the zero section, F/\ the pull-back of F, over itself), then
A := F7Y(A,) is a submanifold of M. Viewing A, C lO)EA C DAV as the 0-
section we may define R to be the obvious retraction DAV ~ Ay — V. Then,

Ro F: Mo—V is a A-defective map with defect set A. It is shown in [17]

that this construction induces a bijection R: [M, D\V] ghaticl Dx(M,V)

of the set of homotopy classes of maps M — DxV with the set Dj(M, V) of
concordance classes of A-defective maps Mo—V.
We rely on the following immediate consequence of this construction.

Proposition 2.1 For each n there is a canonical isomorphism

M, (DAV) — NEEA (V)
[F] +— [RoF],

where we have chosen a representative F' transverse to the universal defect
set Ay.

Proof: In [17], the inverse map £: Dy(M,V) — [M, DAV] of R is obtained
by linear extension as follows. Let f: M ~ A — V be a A-defective map and
v: A — BO(k), : N — ~* be a classifying map for the normal bundle N
of A. The map f defines a section of the bundle C(SN,V) = v*Ak defined
above. Therefore we have a unique lift ¢: A — A, ’(Z)Z N — E% of maps
of vector bundles such that f|sy = ak o 1@|5N. Glueing f|ypny with QZJ‘DN
along SN yields a map L(f): M — D,V. This map represents £([f]) and
will be called a linear extension of f in the sequel.

Applying R o — resp. L(—) to bordisms one easily sees that R and £
induce well defined maps R': M, (DAV) — NEEAV) [F] — [R o F] and
£ MABAV) — 9, (DAV).



Since R o £ = id and £ o R = id we obviously get R o £ = id and
£ oR =id. O]

3 Characteristic numbers for 91904 (V)

The bordism class of f: M ~ A — V is determined by the characteristic
numbers (wr(M) « F*a, [M]), where F' is a linear extension of f as defined
in the proof of proposition 2.1. In the following, we will investigate the
relation between these numbers and the invariants Y rs(f) and 3x4,7.5(f)-
For ¢ > 0 and A € AN[S*7!, V] we define x%: HY(A;) — H9*(D,V) as the
composition

*\—1

b- (L—) o g
HI(A;) —> H"H(DE;, SE5) =— H™"(D\V, DAV \ DE}) —

o

5 gt (DY, (3.1)

where @5 is the Thom isomorphism, ¢5: (DE5, SE5) — (DaAV, DAV ~ ZO)E/—\)
the canonical map and j5: (DAV,0) — (DAV, DAV ~\ DE5) the inclusion.
Additionally, we define p$: HY(SE5) — H?™(DAV) as the composition

k) 1 (Li)il 1 o ]E
HY(SE;) — H™\(DE;, SE;) 2— H™(D,V, DAV ~ DE5) —-

B g (D).
Proposition 3.2 Then we have
D (f) = (wr(M) ~ F*r}(wy(E3)) , [M]).

Proof: Let ®: HY(AW) = gutk¥(DNW SNW) be the Thom isomorphism
and ¢: (DNM SNV — (M, M ~ DNM)| 5: (M,0) — (M,M ~ DNM)
the inclusions. Then we have

g
~
=
(
u*
L
sy
=
>
g%
-
o
S
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Proposition 3.3 Let 75: SE; — A; denote the projection. Then we have
Inara(f) = (wi(M) ~ F*py(T5w,y (Ey) ~ aja), [M]).
Proof: Let tgym: SN < DNO_ 10 (DNW, SNNY < (M, M ~ DNW)
and 3: (M,0) < (M, M ~ DN™) denote the inclusions. Then we have
3nars(f) = ((tsyn) wi(DNY) « (mgye ) w (NV) < (flgye) e, [SNV])
= (wi(DNW) < §((mgym) ws(NV) < (flgym) ), [DNY, SNV))
= (wi(M) < () 0((maym) ws(NV) < (flgyw) @), [ DNV SNV))
= (wi(M) < 7 (") ((mone) ws (NV) = (flayw) @), [M]).
Let {: N — E5 denote the isometric bundle map, equal to ' on DN. Then
(msnen) ws(NV) < (flaym) a = (E]gym) (Fyws(By) ~ aza)

and using 7*(¢*)710(¢| gy )* = F*p} we have proved proposition 3.3. O

4 Regularly defective bordism of the circle
4.1 Homology of D,(S")

In the sequel (co)homology is always understood with Zs-coefficients. In this
section we think of the set A of admitted defect indices as a symmetric subset

ACm(SY =2, A=A, U—-A, with A, C Ny

Theorem 4.1.1 Let AY = Ay N2Z, ¢: @yep, Lo — La, (ax)r — Dy Aax
and assume 0 #= A. Then

Lo for k=0
Zs/im(¢) fork=1
Hi,(DpS") =
e(DaS) ker(¢) C @yep, Zo  for k=2
@,\e/\iv Zg for k>3
and
La for k=0
T g ker (7)) fork =1
H*(DASY) = Hom(Hy(DpSY), Z) = ,

(D57 = HomUH (DS 22) 3 (11, 2,) fim(w)  for k=2
[Dene Zo for k>3



I

where 1 Ly — HA€A+ Za, 1 — (Amod 2)xep,. If0 € A then H(DpSY)
Hyp(DpoSY) @ ZE™Y and H*(DxSY) =2 H*(DpoS') x Z5™ (reading 79 =
Zyt=0).

For the proof of the theorem consider the subspaces

Ca(S1,8") i= {f: §' — S| deg(/) € A},
nor Sl 1y . :Sl Sl 3 3 \vA = A
CR(s',8Y) = {f: 8 = 81 3 3 Y () = %'}

of C(S',S"). Let A > 0 and let A := {)\, —A}. Obviously, C2(S', S!) is
a strong deformation retract of C,(S?,S'). The deformation of the identity
into a retraction can be chosen to be compatible with the SO(2)-action on
C\(S',S8Y). Therefore, A} := EO(2) Xs0(2) CY"(S', S') is a strong defor-
mation retract of

A;\ = EO(2) X0(2) C;\(Sl, Sl) = EO(2) X50(2) C)\(Sl, Sl)

We identify SO(2) = S', and consider the S*-action S* x S? — S, (w, 2)
a(w)z on S, where a: S* — S' w +— w™*. Then the homeomorphism

Cror(St SN — St f +— f(1) is compatible with the S'-actions and we get
AW — BO(2) x4 S* = a, EO(2).

Consider the vector bundle &, = a.EFO(2) xg1 C — BSO(2). We have
c1(€)) = —Aey, where ¢; € H?(BSO(2),7Z) denotes the universal first Chern
class. Reducing modulo 2 we get wy(&,) = A\ws. Since H*(BSO(2)) = Za|w,]
and thus H"(BSO(2)) = 0 for n odd, the Gysin sequence of py: A}" =
S&, — BSO(2) yields an exact sequence

On—1 “Aws *
0 — H (A 22N 2(BSO(2)) 2 HM(BSO(2)) 2 HM(AXY) — 0

for each even n > 2. If A is odd, then « Awy: H"%(BSO(2)) — H"(BSO(2))
is an isomorphism and consequently H*(A}°") = 0 for all k > 1.

If X is even, then — A\wy: HY(BSO(2)) — H*(BSO(2)) is zero and it
follows that there exists a class a € H'(A}") with ¢1(a) # 0. Then
d(a) € H?(DEy, SEy) is the Thom class of the vector bundle £, — BSO(2).
Therefore the restriction of a to each fibre generates the first Zs-cohomology
of the fibre. Recalling that A; ~ A} we obtain from the Leray-Hirsch
Theorem:



Proposition 4.1.2 Let A > 0. If X is odd then H*(A5) = 0 for k > 1. If
A is even then there is a nontrwvial class « € H*(A3) and H*(A3) is a free
module over H*(BSO(2)) with basis {1, a}.

Applying the Thom isomorphism theorem, we get

Proposition 4.1.3 Let A C Z ~ 0 be a Zy-invariant subset, Ay := ANN
and NS := Ay N2Z. Then

(0 fork=0,1

Hy(DxS",8") 2 { @yep, Zo fork =2

| Drercr Z2 fork >3

and
(0 fork=0,1

H¥(DAS', S") 2 S [hen, Za for k=2
([Dercr Z2 - fork = 3.

Thus, in order to prove theorem 4.1.1 for 0 ¢ A, it remains to show

Proposition 4.1.4 The boundary
0: Hy(DpS",S") = €D 7, — Hi(S") = Z,

AEA L
is given by (ax)aea, = Yoxea, Aax and the coboundary : H'(S') = Zy —
H?(D)St, St) = H)\eA+ Zy by 1 — (A mod 2)xea, -
Proof: Obviously, it suffices to show that §: H*(S') — H?(D;S", S) is zero
if and only if A is even.
Let ¢: D* — DE5 denote the inclusion of a fibre of the disc bundle DEj

and j: (DE5, SE5) — (D5S',S') the canonical map. Then we have the
commutative diagram

0 — HY(SY) —2— HYD*SY) —— 0

(451)*T %T"

. —— HY(SE;) —— H2(DE;,SE;) — ...

(J|SE;)*T EL*

L —— HY(SY) —— HX(D;S',SY) —— ...
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Since (jot)|g1: ST — ST has degree 42, it follows that (i]g1)* o (lse)* =0
if and only if A is even. U

For the case 0 € A, observe that A" = BO(2) x Cpor(St, Sh).

4.2 A Basis for DMebA(S1)

Let {BF|k > 0,i € I(k)} be a set of closed differentiable manifolds with
dim BF = k such that {[B¥]|i € I(k)} forms a basis of 91, for each k > 0.
It is well known that one can explicitly specify such a set using products of
real projective spaces and Milnor manifolds, cf. [18], [4].

Let {F}: M| — X |l > 0,5 € J(I)} be a set of singular manifolds in
a topological space X such that {(F}).[M!]|j € J(I)} is a basis of H;(X).
Then the singular manifolds

Fjopry: Bf x M] — X,

for k,1 >0, i € I(k), j € J(I) represent a basis of M(X), cf. [5]. Here [M]]
denotes the fundamental class of M ]l over Zs.

Using this fact and the identification MEA (V) 22 91, (DA V) of Proposi-
tion 2.1 we immediately get

Proposition 4.2.1 Let fi: Mlo=V,1>0,j € J(I) be A-defective maps with
defect sets Al and let F}: M} — DAV be linear extensions. If {(F}).[M]]j €
J()} is a basis for Hi(DAV') for each | then the A defective maps

fjl opry: (BF x M]l) ~ (BF x Az) — V.
k,1>0,i€I(k),je J() represent a basis of MIHA(V).

In the following we explicitly give such a set of A-defective maps fjl, >0,
j € J(I) for the case V = S'.

Let A C Z \ 0 be a symmetric subset and Ay := ANN, A? := A, N2Z.
With the techniques of section 4.1 it is straightforward to show that the
following A-defective maps fulfil the assumptions of proposition 4.2.1. For
simplicity, we omit the case 0 € A.

Dimension 0: We take J(0) := {0}, M{ := {*} and choose a constant map
o M — St

10



Dimension 1: If A contains odd indices then H;(DxS') = 0 and conse-
quently J(1) = (). Else H;(DxS') = Zy and we take J(1) := {1}, M{ := S!
and fi :=idg.

Dimension 2: Let \; < Ay < ... be the sequence of the odd indices in Ay
and let n < oo be the number of such indices. Let

J(Q) = Aij) U {()\Z, )‘H—l) | 1<i< ’I’L}

Let D? C C denote the unit disc. For each index \ € ASY we define
gr: D*N0 — Stz — 22 /|22 Since gx(2) = ga(—2), we get a well defined A-
defective map fZ on M} := RP? by identifying antipodal points in S C D?.

For 1 < i < n let M(Q)”\, )= S? and define f(z/\,)\, ) 5205t to be a

iy Ni+1 iy Ni+1
map with \;;; point defects of index A\; and \; point defects of index —\;;;.

Dimension 2k + 3,k > 0: Let J(2k+3) := A’ and fix some A € J(2k+3).
Consider the canonical bundle v, — CP*. In view of the previous section we
use the lens space

AN(2k +3) 1= SN = S(17Y) = Pooga) (1) Xs0(2) C™X (S, 5"

as a finite dimensional approximation of the universal defect set and
Dr*vy, Uy, St for the defect complex. Here m denotes the projection
S2FL/N — CPF and ay: Sty — S maps ([z],v) — 2V ifv = 22, 2 € SHFL,
veE SHFL 2 e 8 Let

M#FT = Dr*y /£

be obtained by identifying antipodal points in the circle bundle S7*~;. We
have a fibre bundle M**® — S2k+1 /) with fibre RP2. Since ) is even there is
amap fiariz: Mi*3o—St with defect set S2+1/) and local defect index A
induced by ay. By the discussion in the previous section the linear extension
of fxokt+s maps [Mf'”?’] to the generator of Hyy 3(D)St).

Dimension 2k 4 2,k > 1: For A € J(2k + 2) := AY let gy o1 be the
composition

A2k + 2) := RP? — RP?H! = g%+l /9 _, g2k+1 /) |

We define M§k+2 to be the pull-back of Mf’”g to Ax(2k+2) with gy 2512 and
let fx 2x+2 be the composition M§k+2 — M§k+3o—>51. Since g 2x+2 induces an
isomorphism in Hy, we get that the linear extension of fy o2 maps [M fk“]
to the generator of Hopo(DyS1).
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4.3 Characteristic numbers for 9164 (S1)

Let A C Z~.0 be a Zs-invariant subset. In this section we prove the following;:

Theorem 4.3.1 Let f: Mo—S!' be a A-defective map. There is a unique
class « € HY (M) with a|yra = f*os1, where pg1 denotes the generator
of H'(SY). For each A\ € A< there is a unique class By € HY(AW) C
HY(A) with the following property: If v: S* — AW is any continuous map,
i S(*NW) — SNW the canonical map over v and o: S* — S(*NW) an
arbitrary cross-section, then

<ﬁ)\7 L*[Sl]> = deg(f|SN(A) oro O') mod 2.

The bordism class of f: M ~ A — S is determined by the characteristic
numbers
<wI(M) ~ [M]>7
(wi(TM|a) < wa(N) [AV]) = D s g (F) with A €A, (432)
(wi(TM|a) — wa(N)T1 < By, [AV]) with A € A%

together with the bordism class of M.

Let F': M — D;S! be a linear extension of f. Throughout this section let
k5 HY(A;) — H9?(DyS") denote the homomorphism (3.1) in the case V =
S1. Theorem 4.3.1 is an immediate consequence of the following propositions.

First we assume that A C 2Z. Then H'(DAV') = Z,. Recall that we have
HY(DA\V) =0if A ¢ 2Z. Let n be the nontrivial element in H'(D,V).

Proposition 4.3.3 The restriction H*(M) — HY(M ~ A) is injective and
we have (F*n)|ara = f*os1, where g1 € HY(SY) denotes the generator.

Proof: Since A has codimension 2, we have H*(M, M\ A) = 0 and the long
exact sequence yields the injectivity of the restriction. Let j: St — D,S?
denote the inclusion. Since H'(DyS!, S') is zero, j*: H'(DyS') — H'(S!)
is bijective. Consequently, we have ¢g1 = j*n. As F|jy.a is homotopic to
jo f,it follows that (F*n)|yrea = f*5*n = fFos. O

Now, let A be an arbitrary Zy-invariant subset of Z~.0. We have H?(D;S1) =
( ILe AL ZQ) /im(1)), where 9 is the homomorphism defined in theorem 4.1.1.
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Proposition 4.3.4 Let n € H*(DyS") and let (ax)ren, € [Iyen, Z2 be an
element representing n under the isomorphism of Theorem 4.1.1. Then

(wi(M) ~ Frn, [M]) = Z ax (wr(T'M|a) [A(/\)D = Z axDar,0)(f) -

AEAL AEAL

Proof: Since A is compact, we may assume that A is finite. Moreover, it
suffices to consider A € A with ay =1 and a, = 0 for € Ay ~ {A}, hence
n = k3(1). Proposition 3.2 yields

(wr(M) ~ F*n, [M]> = @A,I,(o)(f) = (wi(TM|a), [A(A)D-

For the even dimensions > 4 we have

Proposition 4.3.5 Let ¢ > 2 and n = (ay)rers € HAeAeUZQ H?1(DyS"Y).
Then

(wi (M)~ Fn,[M]) = > ax {w(TM]a) < wa(N)*", [AV))

AEATY

= Z ax mA,I,(O,qfl)u?)'

AEASY

Proof: We may again assume that we have a A € AY with ay = 1 and
a, = 0 for € A~ {\}. Then n = x3% *(wy(E5)?~"). Proposition 3.2 yields

(wr(M) ~ F'n, [M]) = Dxr1,04-1)(f) = (wi(TM]|a) ~ wo(N)T1 [A(A)D_

O
Now, let ¢ > 1 and 1 = (ax)rersr € H)\eAev Zy = H?*TY(DpSY). For
A€ Ay let FV: AW Az be the restriction of F to AX.

Proposition 4.3.6 For A\ € A% let 3y be the generator of H'(A3) as in
Proposition 4.1.2 . Then

(wr(M) ~ Fn, [M]) =
= Y ax (wr(TM|aem) = wa(N|aw)? = FO* By [AV])

AEATY
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Proof: Assume again that ay = 1 and a, = 0 for p € A" ~ {A\}. Then we
have n = K37 ' (wy(B5)"' — 3\). With the Thom isomorphism ® and the
inclusions ¢: (DNN SNWN) — (M, M ~ ZODN(/\)) and 7: (M,0) — (M, M ~
DN®) we get
(wi(TM|am) = wa (Nt FO gy [AV])

= (wi(TM[pye) ~ @FA)*( 2(E )_ < By, [DN®, SNW))

(M) = ()T QFW (wy(B3)™" = By)  t.[DN™, SNW])

(M) < () D FO (s (Bt~ By), [M]).

Using 5*(¢*) 1@ FV* = F*k} we obtain

??

(wi(TM|ae) = wo (N7 o FV* 5, [AW]) = (wi (M) ~ Fny, [M]).
O
Thus, it remains to describe the classes FV* 38y € HY(AW) for A € A<

Proposition 4.3.7 Let A € A%, let v: S' — AN be a continuous mapping
and let i: S(*NWV) — SN denote the canonical map over v. For an
arbitrary cross-section o: S* — S(t* NW) we then have:

<F(’\)*ﬁ)\ , 1,[S"]) = deg(f|gym ©io00)mod 2. (4.3.8)

Proof: Let 0; and o, be two cross-sections in S(t*N™) — S'. Then ob-
viously deg(f|gyx © 7o 02) — deg(flgno © 2 0 oq) is a multiple of A and
consequently

deg(flgno 0 b o oy) = deg(flgyo 0fooy) mod 2.

Therefore, is suffices to show the existence of a cross-section o which fulfils
(4.3.8). Let 7: A; — BSO(2) denote the projection map. As m(BSO(2)) =
0, ™ o FW o4 is null homotopic and we can assume that 7, o FM oy =
r € BSO(2). Let 7% denote the universal vector bundle over BSO(2). An
arbitrary element v € S77 yields a cross-section 7: (Ay), — SE5las).- Let

o: St — S(1*N™) be the cross-section induced by &.
The map a5 o 0 is equal to the evaluation map

(A3)e = CA(57;,51) — S%, gr— g(v)
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and therefore is a homotopy equivalence. Thus, (a5 0 0)*@g is the generator
of H'((A})s) = Zs, ie. (a500)* pg1 = 6>\|(A;\)x' We obtain

AN L*F(/\)*(ax 00)" 51 = (flsnm 0l00) s

and the proposition is proved. O
Thus the characteristic numbers (4.3.2) together with the bordism class
of M determine all the numbers (1.1).

5 Further Examples

We end with some examples of nonvanishing invariants 3y .7,s(f) distin-
guishing bordism of regularly defective maps from bordism of pairs.

Example: The unit tangent bundle of RP?* is explicitly given as STRP* =
{(x,y) € S?** x S* | x L y}/~, with the antipodal identification (z,y) ~
(—x, —y). For independent x,y € R**1 let (x,y) € GF(R**!) denote the
oriented subspace spanned by these vectors and define a map f . STRP?* —
V = GF(R**) by [z,y] — (z,y). Mapping [z,y] — ((z,),[z]) defines
a homeomorphism of STRP?* with the projective bundle of the canonical
bundle over G (R?**1). This is the circle bundle of a 2-dimensional vector
bundle L over G3 (R?**!) and under the above identifications, the map f
extends to the bundle projection of L. Glueing the disc bundle DL of L with
the obvious regularly defective extension of f to the disc bundle DTRP* we
obtain a regularly defective map

f: M = DL Ugpgpt DTRP*0—V = GF (R**1)

with defect set RP*. If k > 2 its local defect index X is a generator of
7 = mo_1(V'). We compute the 3,\@,1,](]?).

From the Leray-Hirsch Theorem we infer that f* is injective and
that H*(STRP?) is a free H*(V)-module with base {1,y} for some
y € HY(STRP?). The Gysin-sequence shows that H*(STRP*) =
Zolb,y]/(b%,y**) as graded Z,-algebras with deg(b) = 2k and y the gener-
ator of H'(STRP*) = HY(RP?). Hence H*(V) = Zy[b,4?]/(?,y%*). One
can now easily compute the 3,7 7(f). For instance taking o = y?*=2b,

I'=(1,0,...,0) and J = (0) we get 3rn1s(f) = 1.

For the second set of examples we need the following.
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Lemma 5.1 For multiindices L, I andl € N there are universal polynomials
priy € Zo[Th,.. T} with the following property: Let m: N — A be an [-
dimensional vector bundle, Uy its Thom class and ® the Thom isomorphism.
Then Pp: H*(A) — H*(A) mapping

T — Z prr(w, ..., wy) Sql(x)

IeNg,teN

fulfils S (®(x)) = ®(Pp(x)).

Proof: We use induction on the length of L. For L € N we compute

Sq"(®(x)) = Y 7 (Sq"(x)) Sq°(Uy) = @ ( > w, Sqr(ﬂf))) :

r4+s=L —®(ws) r+s=L

The assertion follows by induction using the formulae of Wu and Cartan.
Obviously the polynomials do not depend on the bundle 7: N — A. (]

Proposition 5.2 Let M be a compact n-dimensional manifold and A a
closed k-dimensional connected submanifold. Let m : N — A be the nor-
mal bundle. Let I.1,J,J, L, L be multiindices and y € H " TF+1(A), y # 0
with s > n — k — 1 such that

1. wox(N) =0,

2. H"k(M,A) = H5(M,A) =0,

9. (Py(1) — wiA) < wy(N), [A]) #0,
4. (Pp(y) = wi(A) = w;(N), [A]) # 0.

Then there are maps fio : M N A — V 1= K(Zy,n — k — 1) x K(Zs,s)
with the same nontrivial local defect index \ representing different nontrivial
elements in NILA(V).

For an explicit example choose M = S™ and A any submanifold diffeo-
morphic to RP* with k even, n > 2k +1,n —k < s <n, I = (1,0,...,0),
J=J=(0,...,0),L=1,I=(n—s—1,0...,0), L =0, y = 2* "1 with
z the generator of H*(RP*).
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Proof: The f; will be distinguished by suitable 3, .. Let u and v be the
characteristic elements of K (Zy, n—k—1) and K (Zs,s). Let b € H" *~1(SN)
with p(b) = 1 where p is the connecting homomorphism in the Gysin se-
quence. Let i: SN — M ~ A be the inclusion. The long exact sequence
of (M ~ DN, SN) shows that there is an € H" * (M ~ A) such that
i*(z) = b. There is a unique map f: M N A — K(Zy,n — k — 1) such that
f*(u) = x. Analogously there is a & € H*(M ~ A) with i*(Z) = yb and a
map g : M N A — K(Zy,s) with g*(v) = Z. Define f; := f x const. and
foi=1xy.

Now we show that both maps have nontrivial local defect indices. Since
07" f*(u) is the Thom class of N we know that its restriction on any fibre of
SN is not zero. This shows that the local defect index of f is not zero for
any p € A.

By assumption 3, 3, sqrw)x1,r,7(fi) = 3xsqt@w).r,7(f) # 0. Hence the f;
are not null bordant. But on the other hand f; and f5 are not bordant since
3A,1xsqi(v),i,j(f1) = 0 and 3)\,1><Sqi(v)j,j(f2) # 0. O
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