The local defect index up to finite ambiguity

Stefan Bechtluft-Sachs

Marco Hien

Abstract: The rational Hopf invariant of the primary obstruction to a nowhere vanishing section in a vectorbundle is computed in terms of characteristic classes. This leads to a local rigidity result on the local defect index of a map.

We consider a q-dimensional oriented vector bundle E over a cell complex Δ and a section σ of the sphere bundle SE over the p-skeleton of Δ . Let $c(\sigma) \in$ $H^{p+1}(\Delta; \pi_p(S^{q-1}))$ denote the primary obstruction to extending $\sigma|_{\Delta^{p-1}}$ to the p+1skeleton. It is well known that the coefficient group is infinite only if p = q - 1or p = 4l - 1, q = 2l + 1. In the first case the obstruction is the Euler class of E. In the second case, we compute the image of this obstruction under the rational Hopf invariant $h^{\mathbb{Q}}$, i.e. under the composite $h^{\mathbb{Q}}: \pi_{4l-1}(S^{2l}) \xrightarrow{h} \mathbb{Z} \hookrightarrow \mathbb{Q}$, where his the Hopf invariant.

Theorem 1 Let *E* be an oriented real vector bundle dimension 2l + 1, $l \ge 1$ over a 4*l*-dimensional cell complex Δ . Let $\sigma : \Delta^{4l-1} \to SE$ be a section of the sphere bundle SE over the 4l - 2 skeleton of Δ which extends to a section over the (4l - 1)-skeleton. Then the image under the rational Hopf invariant of the primary obstruction $c(E, \sigma) \in H^{4l}(\Delta; \mathbb{Z})$ to extending σ to Δ is given by

$$p_l(E) - e(\sigma)^2 = 4 \ (-1)^l \ h^{\mathbb{Q}}_* c(E, \sigma) \in H^{4l}(\Delta; \mathbb{Q})$$

where $e(\sigma) \in H^{2l}(\Delta; \mathbb{Q})$ restricts to the Euler class of the the complementary bundle of σ over Δ^{4l-2} .

Consider a regularly defect cross section σ in a q-dimensional vector bundle Eover a manifold M i.e. σ is defined only outside some closed submanifold $\Delta \subset M$. The local defect index (at a point $x \in \Delta$) is $\iota(\sigma) : SN_x \to SE_x$ where N is the normal bundle of Δ in M, see [3, 4, 2] for these notions in ordered media with defects. Let p be the dimension of N and assume N and E oriented over Δ . Then we may identify $\iota(\sigma) \in \pi_{p-1}(S^{q-1})$ as the primary obstruction to extending the section σ on SN to DN. If p = q we have that $e(E) = \iota(\sigma)e(N)$. In the case p = 4l, q = 2l + 1 we can apply the previous theorem to the 4*l*-skeleton of the relative cell complex (DN, SN) and get

$$4 \ (-1)^{4l} \ h^{\mathbb{Q}}(\iota(\sigma))e(N) = p_l(E) - e^2 \in H^{4l}(\Delta, \mathbb{Q})$$

where $e \in H^{2l}(\Delta) \cong H^{2l}(SN)$ is the Euler class of the complementary bundle of σ on SN. Thus $\iota(\sigma)$ is determined up to finite ambiguity by e (and the bundles N and E) if the Euler class of N is not torsion.

Proof of the Theorem: Consider the Postnikov decomposition of the map $BSO(2l) \rightarrow BSO(2l+1)$.

$$BSO(2l) \xrightarrow{q} B_{2l-1} \rightarrow \cdots \rightarrow B_2 \rightarrow B_1 \rightarrow B_0 = BSO(2l+1)$$

where the fibre of the map $B_{i+1} \to B_i$ is an Eilenberg MacLane space $K(\pi_{2l+i}(S^{2l}), 2l+i)$. Let $c \in H^{4l}(B_{2l-1}; \pi_{4l-1}(S^{2l}))$ be the primary obstruction to splitting q. The section σ gives rise to a lift of the classifying map ϵ of E to a map $\epsilon_{\sigma} : \Delta \to B_{2l-1}$ and we have $c(E, \sigma) = \epsilon_{\sigma}^* c$.

Clearly $q^*c = 0$. For $i = 1 \dots 2l - 2$ the groups $\pi_{2l+i}(S^{2l})$ are finite and the Eilenberg MacLane spaces $K(\pi_{2l+i}(S^{2l}), 2l + i)$ are rationally acyclic. Hence the composition $B_{2l-1} \to \cdots \to B_2 \to B_1$ induces an isomorphism in rational cohomology. From the Serre spectral sequence and the fact that $H^*(K(\mathbb{Z}, 2l); \mathbb{Q}) = \mathbb{Q}[x]$, where $x \in H^{2l}(K(\mathbb{Z}, 2l); \mathbb{Q})$, we get that $H^{4l}(B_{2l-1}; \mathbb{Q})$ is spanned by monomials in the pull back of the universal Pontrijagin classes $p_i \in H(BSO(2l+1); \mathbb{Q})$ and an element $y \in H^{2l}(B_{2l-1}; \mathbb{Q})$ whose restriction to the fibre is x and with $q^*y = e$, where $e \in H^{2l}(BSO(2l); \mathbb{Q})$ denotes the universal Euler class. Since the only relation among the characteristic classes in $H^*(BSO(2l); \mathbb{Q})$ is $e^2 = p_l$, we infer that the kernel of q^* in H^{4l} is spanned by $p_l - y^2$. Therefore we find $\alpha \in \mathbb{Q}$, such that $\alpha c = p_l - y^2$ and

$$\alpha c(E,\sigma) = \alpha \epsilon_{\sigma}^* c = \epsilon_{\sigma}^* (p_l - y^2) = p_l(E) - e^2 .$$

In order to determine the value of α it suffices to consider the special case of a real (2l+1)-dimensional vector bundle E over $\Delta = S^{4l}$. Let $\eta : S^{4l-1} \to S^{2l}$ be the Whitehead product $[\iota_{2l}, \iota_{2l}]$, where ι_{2l} is the identity on S^{2l} . Its Hopf invariant is $h(\eta) = 2$ ([5]). For some integer r the composition of the map $\rho : S^{4l-1} \to S^{4l-1}$ of degree r with η lifts to a map $S^{4l-1} \to SO(2l+1)$, which we take as the characteristic map for the vector bundle E. The primary obstruction c(E) in the theorem may be identified with $[\eta \circ \rho] \in \pi_{4l-1}(S^{2l})$. The Pontrijagin class $p_l(E)$ can be interpreted similarly: The complexified bundle $E \otimes \mathbb{C}$ admits a reduction to a SU(2l) bundle E' and $(-1)^l p_l(E) = c_{2l}(E') = e(E')$ is the same as the degree of the characteristic map of E'. Hence we have to compute the degree of the composite

$$S^{4l-1} \xrightarrow{E} SO(2l+1) \hookrightarrow SU(2l+1) \longleftrightarrow SU(2l) \to S^{4l-1}$$

This is the same as

$$S^{4l-1} \stackrel{\epsilon}{\longrightarrow} ST \stackrel{\zeta}{\hookrightarrow} L := SU(2l+1)/SU(2l-1) \longleftrightarrow S^{4l-1}$$

where $T = TS^{2l}$ is the tangent bundle. The inclusion on the right hand is the inclusion of the fibre in the sphere bundle $L \to S^{4l+1}$ and induces an isomorphism in H^{4l-1} . We will show, that ϵ and ζ induce multiplication with 4r respectively 2 in H^{4l-1} . Then $(-1)^l p_l = 8r = 4h(\eta \circ \rho)$ and the theorem is proved.

For the assertion about ζ observe that the restriction of the bundle $L \to S^{4l+1} \subset \mathbb{C}^{2l+1}$ to $S^{2l} \subset \mathbb{R}^{2l+1}$ is the sphere bundle $S(T \oplus T)$, where T is the tangent bundle of S^{2l} and \oplus denotes the fibre product over S^{2l} . The fibre inclusions $S^{4l-1} \hookrightarrow S(T \oplus T)$ and $S^{4l-1} \hookrightarrow L$ induce isomorphisms in H^{4l-1} . Thus we have to compute the map $H^{4l-1}(S(T \oplus T)) \to H^{4l-1}(ST)$. By the multiplicativity of Thom classes, we may decompose this map as

$$H^{4l-1}(S(T \oplus T)) \xrightarrow{\partial} H^0(S^{2l}) \xrightarrow{\cup e(T)} H^{2l}(S^{2l}) \xleftarrow{\partial} H^{4l-1}(ST)$$

where ∂ denotes the connecting homomorphism in the Gysin sequences of $T \oplus T$ and T respectively. Since e(T) = 2, ζ induces multiplication by 2.

For the statement about ϵ let r be the order of the finite group $\pi_{4l-2}(S^{2l-1})$. Fix a unit vector $p \in S^{2l-1} \subset D^{2l} \subset \mathbb{R}^{2l}$ and denote by $q: S^{2l-1} \to SO(2l)$ the characteristic map of the tangent bundle of S^{2l} , thus

$$ST = D^{2l} \times S^{2l-1} / \sim \text{ where } (x, v) \sim (p, q(x)v) \text{ for } x \in \partial D^{2l}$$
(1)

The map $x \mapsto q(x)p$ on S^{2l-1} has degree 2 ([1]). We represent the Whitehead product $\eta = [\iota_{2l}, \iota_{2l}]$ by the map

$$S^{4l-1} = D^{2l} \times S^{2l-1} \cup S^{2l-1} \times S^{2l-1} \times I \cup S^{2l-1} \times D^{2l} \xrightarrow{pr_1 \cup * \cup pr_2} S^{2l}$$
(2)

where pr_i denotes the projection on the *i*th factor and * is the constant map. In order to lift $\eta \circ \rho$ we need to lift the *r* fold connected sum of (2), which is obtained by glueing (2) in the interior of the cylinders $S^{2l-1} \times S^{2l-1} \times I$. We can lift $\eta \circ \rho$ on the handles $D^{2l} \times S^{2l-1}$ and $S^{2l-1} \times D^{2l}$ by mapping $D^{2l} \times S^{2l-1} \ni (x, y) \mapsto (x, q(y)p) \in ST$ and $S^{2l-1} \times D^{2l} \ni (x, y) \mapsto (y, q(x)p) \in ST$. By the identification (1) this determines a map $\lambda_0 : S^{2l-1} \times S^{2l-1} \times \{0, 1\} \to S^{2l-1}$ mapping $(x, y, 0) \mapsto q(x)q(y)p$ and $(x, y, 1) \mapsto q(y)q(x)p$. Since the bidegree of λ_0 on both components is (2, 2), we can extend it to $(S^{2l-1} \vee S^{2l-1}) \times I$. Furthermore $S^{2l-1} \times S^{2l-1} \times I$ arises from $S^{2l-1} \times S^{2l-1} \times \{0, 1\} \cup S^{2l-1} \vee S^{2l-1} \times I$ by attaching a cell of dimension 4l - 1. Its attaching map composed with λ_0 yields a map $\lambda : S^{4l-2} \to S^{2l-1}$. By assumption, $r\lambda$ is nullhomotopic. Hence we get an extension on the *r*-fold connected sum of the cylinders.

Clearly the lift so constructed has degree 4r. Eventually substituting r by a multiple we can further lift ϵ to SO(2l + 1) to realize it by a vector bundle E.

•

References

[1] Husemoller, Dale: Fibre bundles. Third edition. Graduate Texts in Mathematics, 20. Springer-Verlag, New York, 1994.

- K. Jänich: Topological properties of ordinary nematics in 3-space. Acta Appl. Math. 8, 65-74 (1987)
- [3] N. D. Mermin: The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591-648 (1979)
- [4] L. Michel: Symmetry, defects and broken symmetry. Configurations. Hidden symmetry. Rev. Mod. Phys. 52, 617-651 (1980)
- [5] Whitehead, George W. Elements of homotopy theory. Graduate Texts in Mathematics, 61. Springer-Verlag, New York-Berlin, 1978.