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The growth of bounded and related funcﬁ:i(mé:

by W. K. Hayman



mhe seowth of hounded and related Tunctions in the
unit disk
by LN, Fayman

Abstract: In this £ad¥k an answer supplied to the following question of Rozenblum: *How
fast can a bounded analytic function in the unit disk tend to zero outside an appropriate
exceptional set”? The answer is obtained first for Blaschke products and is then extended to
the Nevanlinna class of functions of bounded characteristic, i.e meromorphic functions which
are the ratio of two bounded functions, by the representation of such functions as the ratio of
two Blaschke products multiplied by an exponential term. For Blaschke products B (%) it is
shown that '

(1= l2[)log[B(2)] = 0 (x)
as |2] — 1 for z outside an exceptional F-set. This is defined in the introduction as the union
of a suitable set of disks lying in the unit disk. It is also shown that thesé'resdlts: are.,
essentially sharp.
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1 Introduction

This paper answers a question of Grigori Rozenblum [9].

"Let f(z) be a bounded analytic function in the unit disk. Can we remove from the interval
(0,1) some small set containing zeros or places close to zeros, so that on the remajining part of
the interval f cannot tend to zero, as x — 1, faster than exponentially?”

There are two bagic questions.

1. What is the behaviour outside an exceptional set?

2. How small is the exceptional set?

For some earlier answers to these questions see Cargo (3], Tanaka [11] and the survey by Eider-

man and FEssén [5].
In this paper we give answers to these questions for Blaschke products and then deduce corre-

sponding results for functions of bounded characteristic.

Definitions. Let A(z, p) denote the disk |z — z] < p. We write
rr=1—2"% k=012 . (1.1)

and consider a class 7 of disks A(z, p) contained in A == A(0, 1), and the subclass 7, of those
disks of 7, whose centres lie in the annulus

Th-1 < |2} <1,k 2 1 (1.2)

Let py be the sum of the radii of the disks in Fy. A set of points Fq will be called an F — set
if Fo is contained in a unjon of disks JF, where F lies in rx, < {z| < 1 for some ky in N and is
such that px < 2'7* for k 2 kg and

0

> {log(2*/pu)}* < oo, (19
k=ko .
Let a, be a sequence of points in A\{0} such that

o

Y01 - la,l) < oo, (1.4)

p=1
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'-5\/ and suppose that A € R,p € {J} Upf Then
Bly) = oit,p fu] a2
(z) = e"z H{ oy 1=z (1.5)
p=1

is a Blaschke product.
We can now state our results.
Theorem 1 If B(%) is a Blaschke product then there ezists an F-set Fy such that
(1~ |2]} log|B(2)| = 0 (1.6)
as |z| = 1— with z ¢ Fp. : |
Conversely we have

‘Theorem 2 Let py be a sequence of positive numbers satisfying (1.3) with ko = 1 and let #,
be a sequence lying for each k in the annulus (1.2). Further suppose that 0 < e(r) < g for
0<r <1 and that

_ g(r)—>0asT 1,
Then there exists o Blaschke product B(z) such that
(1~ |2l) log |B(2)] = o0 (17)
as |z| =+ 1—, with z in the union of the disks Az, pi) and o
(L—=m)log|B{r)| < —e(r), 0<r < 1. (1.8)

Since logz < z, for z > 1, an immediate consequence of (1.3) is that

S e/ =12 < oo, - (1.9)

where A(z,, p, ) are the individual disks of F; equivalently the sum of the hyperbolic radii of
the disks A(z),p,) converges. However(1.3) is significantly stronger than (1.9).

2 Consequences

We assume from now on that our functions f(z) are not constant. Suppose that f(z) is a
meromorphic function of bounded characteristic (b.c.) i.e. the ratio of two functions bounded
in A. Then {6, Theorem 6.13,p.179)

£(z) = E:g exp{%r-/: zzzzcm(e) +7;D} (2.1)

for z € A; u(f) has bounded variation, D is a real constant, and Iy, 11, are Blaschke products.

Theorem 3 If f has b.c. then there exists an F-set Fy such that, if ¢ = e'© then

o

=7 1og 11 ()] = (@), (22)

1~ {z|?

as z = ¢ nontangentially with z ¢ Fy. Here a(0) = 0 outside a countable set {©, }and

Y 1a(®,)] < oo, (2.3)




Corollary If

M) = MO, 1) = oup 1) 2.0
then
(1-7) log M(r) — Qm(gx a{0), (2.5)

asr — 1 through real values outside an F-set.

Some of the results in Theorem 3 extend to more general classes of functions. For instance
Rippon [8] has proved corresponding results for functions of locally bounded characteristic
(Lb.c.) (For a definition see e.g. Hayman and Korenblum [7]). In this case the exceptiona)
set Fy may depend on the boundary point (. Rippon‘s result extends to L.b.c. subharmonic
functions in a ball in R™; it is still true that () always exists and is zero outside a countable

sel.

We remark that from(1.9) and in particular from (1.3) we deduce that, for every ¢ = ¢¥
and all g in {-=/2,7/2) apart from a set of measure zero, (2.2) implies that, if z = ((1 — te*)
and t — 0 for fixed & and g,

(L= 121%)%I¢ — 2

(1~ 1eP)log|S()} = S ey loslF ()]
- B Ht o1 ). 2

In particular, if
0 < [e(0)] < o0, (2.7)

then
u(z) = (1~ |21*) log | /()]

has infinitely many distinct asymptotic values at ©. It now follows from Bagemihl's ¢ Ambiguous
Points Theorem® (Bagemihl [1], see also Collingwood and Lohwater [4,p.83]) that the set of 4,
for which () exists and satisfies (2.7), is necessarily countable. Here f can be an arbitrary
function from A to § UconIf f = 0 or co we write u = 0. This does not affect (2.6) if (2.7)

holds. ‘ h(«“

3  Proof of Theorem 1. Preliminaries.

In (1.5) let n(t) be the number of zeros a, in 0 < |z| < ¢. Then by (1.4)
oo 1 1
SO - Jaul) = / (1 — t)dn(t) = / n(t)dt < oo, (3.1)
; 0 0
We recall (1.1) and define

Then ‘

i



So by (3.1)
oo 1
dotN, < 2/ n(t)dt < co.
k=1 ﬁlf

Suppose now that k& > 3 and that
Tr-1 < 2] < 1y

Then

log|#/B()| =S log (1 ~ 8,2)/( - a,)

p=1

D

logl€rr-z  rees<law|Sreer leplPrigs
DAL AE,
1 2 3
We note that

1—az|* |1 —az|? - |z —al?

(L= 1o~ |2*)

=1+

=1+
[z aft PRYE

Z— &

In 3", we have for a = a,
la — 2| 2 rp—1 —Th2 = 1 — 2|,

and
a2l > (1~ fal)
S50 ) )
(=D — 127 (2 laD - ) ¢ g
|z — af? |z — allz — al
Hence

>S5 L1089 < 2Vyp = 0(2%) = o(1/(1 - |21))
by (3.2). Next in ), with @ = a,, we have

o= al > 501~ lal), e al 1 = ol
So by (3.5) and (3.6)
1-az| 1 (1 - la[))(1— |2)
log — =§1og<1+ e )
(1- |a'|2)(1 - |z|2) < 8(1 -~ {al) < 23+k(1 — |al).
20z — al? Tl

So by (1.4}

Do, <Y (L-tal) = (z’c)ﬂm.

(3.8)



4 Completion of proof of Theorem 1.

To estimate ), in {3.4) we need two lemmas.

Lemma 1 The Boutrouz-Cartan Lemma. Let
N

P(z) = H (z — ay)

p=1
be & monic polynomial of degree N. Then if C > 0 we have
(P(2)| > CN

outside o set of at most N disks, containing the zeros of P, and the sum of whose radii is at
most 2eC.

For a proof see Boas [2,p.46).

Lemma 2 Ift,, v =1 to n, are nonnegative with

n
St =T,
1

and ¢(t) 1s continuous in [0, T] with ¢(0) = 0, and further ¢'(t) is continuous and nondecreasing
wn (0,T), then

The result is trivial if n = 1. 'We now use induction on n and suppose that Lermnma 2 holds
for n — 1. Since ¢'(t) is continuous and nondecreasing in (0,T) and @(t) is continuous in [0,T,

we have, writing
n--1
T’n—l = 5 tv;
v=h

(Toe1 + tn) — #(Th1) — 8(ts) + 8(0) = /tn {#' (L1 + ) — ' (2)}dz > 0.

Since ¢(0) = 0, this completes the inductive step and Lemma 2 is proved.
We now recall (3.2) and, for & = 0, choose g, so that

O<er<l, € —=0 as k— oo, (4.1)
and
> Nepa27* /e, < o0, (4.2)
k=1

Next we recall (3.4) and divide the annulus
Thoo |C| < Tkl

into sectors

B, (v=1)27% < (argQ)/(2m) <v27" (4.3)



so that
Biyygot = By, , —00 < v < +oo0.

If z € By, and satisfies (3.3) we denote by B, , the set

v4-1

L) Bip
p=v~—1
Let Y7, denote the sum over all zeros a,, in By, and let 55 denote the sum taken over the

, I . .
remaining @, in . In we have z = pe®© a, = 0@, where .
(= 2 2 y Yo )

H

B3| —

1
2R < |0 - & < m, p2§, gz
since k¥ > 3 in (3.3) and so
. 1
|z - a,| = [0e¥@"9) — p| = 58111(7T21"k) > o1k,

It now follows from (3.5) that a = a,, satisfies

1—az|? 4(1 ~ la) (1 - |20) 4 % 932k
< S+ g =9
zZ-a bt |z — al? b 222k
Thus )
>, g (1 —8,2)/(2 = 0,)] < Niyalog3 = o(2) (4.4)
by (4.2).

Next in Z; we have by (3.5), with a = a,,

1 —az|” ;o G =1a)3 = 2%

Z2—=0a

1

|2 —al?
and by (3.3}, (4.3)

2~ a] < ||2] — lol| + | arg z — arga] < (4r +3)27%,

so that
(1o = 121*) _ (1 =]ah(1 = |2]) ~1-2k 20—2k ! -
> 2 = (4 2,
|z»_a|2 |z_a|2 /2 /{(47T+3)2 } 2(W+8)

Thus

L-azl” _ {2047 +3)" + 131 — Ja]") (1 — |2*)

Z-q |z — al?

< 4(2(dw + 32 + 1)2%7% /|2 — o|? < 10°27%/|z — a|?.
Hence

' / 3n—k
570100 = 2,/ — 0l < Yo () (45)



Let N = Ny, be the total number of zeros in B;ly. ‘We apply Lemma 1 with

where the product is taken over all the zeros in B;c]y and
C = C\n = 10°27% exp(—e,25/N),

80 that
N 1og(10%27% ) C) = ex2F. , (4.6)

We deduce that r
S log(C/)z — al) <0,

outside a set of disks the sum py, of whose radii satisfies

P < 26C. (4.7)

By (4.5)this yields

57 logl(1 = 3,2)/(z — a < 3, g [10°27/(2 — )

= 5 1081C/(z — a,)]| + Niog(10°27*/C)

< Nlog(10327%/C) = g,2% (4.8)
by (4.6), outside a set of disks the sum py, of whose radii satisfies
Pk < 2000e27% exp(—€2"/Ny,).

We combine (3.4),(3.7),(3.8),(4.4) and (4.8) and deduce that, for z satisfying (3.3) we have

> 10811 = u2)/(z = au)| = o(2") = o{1/(1 ~ |2]}}, (4.9)
outside a set of circles the sum of whose radil p,, satisfies
ZV > orw <2y C, = 2000027 > exp(—ex2/Ney). (4.10)

We now apply Lemma 2 with
#(t) = exp(—ex2°/t) ,t >0,
T = 3Ny, and 8(0) = 0. Then
y (&) = e 2F @)/, #'(8) = {(£a2"/8)?  26,2°/8}(2),
so that ¢(t) is continuous and increasing for 0 < ¢ < g2,

We note that each zero a, in the sum S, 18 counted in at most 3 of the sums Ny ,. So

> " Ny < 3Niys = o(ex2"),



by (4.2). Thus Lemma 2 is applicable for T = 3Ny, and k = ki say and we deduice that, for

k2 k,
P =Y pru <2000 e 27*0(> " Ni,)
€ 2000 e 27* exp(—e52°(3Nks1)).

So
1og (2000 e27% /o) = Eka/(3Nk+1)
and -
> (log2000e2 */p) ! < 00
k=K
by (4.2). So

px2® — 0 and log(2000 e 27%/px) < 21log(2'*/px)

for large k. Thus for a suitable &y

Y {log(2'*/p)} 7 < o0,
ko

which is (1.3). Also for z in (3.3) and outside the exceptional circles we have, by (3.4), (3.7),

(3.8) and (4.9)
log [1/B(2)] = o(2*) = o(1/(1 - |2])).

as fzl = 1~
This is (1.6) and completes the proof of Theorem 1.

5 Proof of Theorem 2.

Let py be a sequence satisfying (1.3). Thus
kak - 0.

We assume from now on without loss of generality that 0 < g < 2V"% for & > 1. We next
choose €y to satisfy (4.1) and

> {ex(log zlmk/p,c)_rl < 00. (5.1)

Suppose further that z; lies in (1.2). We then place a zero of multiplicity py &t 2, where py is

the integral part of
1+e;, 25 {log(27%/px)} 7. (5.2)

Then, since z lies in (1.2), we have

pr(1 = |2]) Spp(1 = rp_q) = o2 F ,
<2+ 26, {log (27 /oe) } (5.3)

50 that

Z'Pk(]- —lzx]) < oo,



by (6.1). We can therefore form the Blaschke product

o0

B = [J{ 225" (5.9

2k (1 — Zypx
since (1.4) is satisfied.
It follows from Schwarz's Lemma, that for |z — 2| < px < 27% we have

log | Bi(2)| <pxlog{pe/(1 — )} = —pr log(27*/ps)
< — 2%/ < ~1/{ec(1 - |2},

by (5.2). Since &, —+ 0, this proves (1.7).

We next construct another Blaschke product By(2) to satisfy (1.8). Then B(2) = B,(2)By(2)
will satisfy (1.7) and (1.8), and so Theorem 2. We note that, if 0 <7 <a < 1, we have

log{(1 ~ ar)/(a 1)} = og{1+ (1 = @)(1 +7)/(a = ")}
> log(1 4+ (1~ @)/(1~ )} > 2 (1~ a)/(1~7), (5.5)

since log(1 +2) > z/(1 + ), if 0 < z € 1. We now define integers k, as follows: %y = 0, and
for p 2 1, k,, is the least integer such that k, > p and

e(r) <2772, <r <l (5.6)
Set ng = 0, let n1 be the smallest integer such that

ny = 29 ¥ g, (5.7)
and for p > 1 we define
n, = 277, (5.8)

We now place a zero of multiplicity n, at ap = 75, p =1 to co. Then

inp(l e a’p) = i::?k”_p Q—k” - i 2-—10 — '?2;
p=

Thus we may form the Blaschke product
By(2) = | [{(ap — 2)/(1 — apz)}™
p=1

Also if r,_, <1 <rg,, where p > 1, we have

log B2 (r) < —nglog{(1 — apr)/(ap —~7)}
< *%np(l —~ap)/{1—1) < -%2’“P"p2ﬁ"’”/(1 —r} < —e(r)/(1-7)

by (5.5) to (5.8). Hence B(z) = B1(z)B,(z) satisfies (1.7) and (1.8) and Theorem 2 is proved.



§] Pr@of of Theorem 3.

We deduce from Theorem 1 that, if ¢ = %©,

as z —  nontangentially outside an F-set. For if

1~ 27 = pe'?, . (6.2)

where
< Wg < /2, 0 < p < cosWy, (6.3)

then
z = 91 — pe'),
|2|* = 1 - 2pcos W -+ p?,
1= el 2 (L= al)/2 = peos ¥ = 50 > Zpcos W,
p=|1—2e""° < 2(1 — |2])/ cos ¥q. ' (6.4)
So {6.1) follows from Theorem 1.

In (2..1) we have
w(O) = 112(0) — p2(0),

where 14, fiz are positive increasing functions of © and so have left and right limits ,u,;"(@o) and

15 (By) for all Gy,
F(00) = 45(8) = 0 > 0.

Also a; = 0 outside a countable set E; and

57 05(6) < o= {s(2m) ~ 5(0)} < oo . (69)

We write 0 (@) — 04(0) = «(©). Then

1 (Ot gl 4y e - 2
dp(©) = o(Bo)

2’JT Dg—7 8%.@ — Z
1 [0t 10 4 5

T I i©
T Jogm €° %

= I){2) + I(z), (6.6)

dr(Q)

where v(©) is continuous at ©y. We have from (6.2}, with © = O

e 4z 2—peY 2
. - 2 TPE -1
e?.@o — pez\ll 0

while _ _ _
1 — ze™®0 = pe'¥ R(1 — 2¢7%9) = pcos T,



3
0 2

|z — sz p (2pcos ¥ — p?)
RI — = ().
Since v is continuous at Gy, we can find increasing vy, 7 == 1,2, continuous at @0, such that, if

£ > 0, there exists a positive ¢ satisfying
Uj(@[}+0’)—Uj(®g—O‘)<E i=172

and .
v(0) = 1y(0) — 1 (0).

We now write
1 Boto 1 Oq+2m--0o

Iy = = I3 + 14

27[' @0 — 2 Sgto

|13 < /Idv \»-—ww

8’5@ 4 ei@n 1 _I_ez'(e—@n) ' 1
R(ez‘@ _ 6@90) =K (”1 _ 871(@—60)) =R ("LCOt{g(@ - @0)}> = 0.
So RIs(z) = 0as z — ¢ in any manner. We deduce that

lim sup (1 — |2D|R1(2)| € 2¢/m, (6.8)

Also

as |z| — 1 in any manner, and since € is arbitrary

lim sup (1 — |2})RI:(2) =0 (6.9)
as z — €99 in any manner and |
o O
lim. sup WRIZ = (6.10)

as z — 90 nontangentially. Now (6.1),(6.5),{6.6) and (6.9) yield (2.2) and (6.4) yields (2.3).
This proves Theorem 3. In fact (6.6) and (6.7) show that

tog |7(2)| = (6) 2k + 105 (6.11)

as z — ¢ in any manner outside an F-set. This is a little stronger than {2.2).

7 Proof of Theorem 3, Corollary.

We note that by (2.3)
a(©,) =0

as v — oo. Suppose first that c{8) <0 for all @. Then it follows that 4(©) is uppersemicon-
tinuous, (u.s.c.) and so uniformly ws.c, in (2.1). For we can write in (2.1),

p(O) = 1 (©) - ua(6),



L

where y; (©) is continuous and nondecreasing and 12(©) is nondecreasing. Hence im (2.1)

log | ()1 (2)] = — / i _};i_—"?%dpl(®) Fulz), (7.1)

or J_, |e®

where u(z) < 0. Since 1, (0) is continuous and so uniformly continuous in [—27, 277], we can,
given a positive ¢, find a positive § such that

',ul(@+6)——,u1(®—5)<e, —r £ O L .

~ Then if —7 < 8y < 7 we write in (7.1)

1™ 1—1e)?
2—7}" . Iei@ N ngdﬁbl(@)
Co+é Qg+20—56
/ - I(2) + I(2), (7.2)
Bg—§ @o—f~5 ' -

say. Here

() faoes () o
Also if z = re'® and § < |© — G| < 7 we have in Ly(2)
1e"® — 2} = sind
so that , as r — 1, we have uniformly in Gg
I(z) = 0. (7.4)
On combining (7.3) and (7.4) and recalling that, by Theorem 1,
(1 {z]) log [TI2(2)] -+ O,
as |z| — 1 in any manner outside an F-set Fy, we deduce that, by (7.1)
' lim sup (1 — |2]) log|f(2)| <0 (7.5)
as |z| = 1 for z cutside Fy; for & can be arbitrarily small in (7.3}, Hence
lim sup (1 —r)log M(r, f) <0, (7.6)

as r — 1 outside an F-set I, which is the circular projection of Iy onto the positive axis. Also
by Theorem 3 we have for almost all ©@ as r — 1

(1—r) log|f(re®) = 0.

Thus strict inequality cannot hold in (7.6) so equality must hold with lim instead of lim sup.
This proves Corollary if &(©) < 0 for all ©. The maximum of a(0) is zero in this case and is
attained for almost all ©.

Suppose next that a(Bg¢) > 0 for some © = O¢. It follows from (2.3} that a(8) 2 ()
for only finitely many values of ©. Among these we choose ©; so that a(©,) is maximal. Then
a(0) € a{©,) for all © so that

a(0;) = m@axoa(@) (7.7)



and the maximum is attained. We write a(©1) = . It follows that, given Gg, —7 < @, <
and € > 0, we can find a positive § such that

,Ldl(@() + 25) — ,Lbl(@g — 25) < QTT(OA + E). (78)

The corresponding open intervals I(©g) = (¢ — 8, Qo+ §) cover [, 7] and hence we can select
a finite’ subcovering, 1(0,) = (8, — d,, ©, +4,), u» =1 to M, whose union covers (7,7,
Hence, if do = mind,, then, for —n < © < , the interval (© — &, © + 8o} lies in one of the
intervals (©,,—24,, ©, +28,). For we can choose 4 so that © lies in 1(0,,).

Thus p1(0+do) — 1 (® — &) < a+e, —r < B < 7. We now proceed as in (7.2) with 4,
instead of 4. Instead of (7.3) we obtain
{1+ ]4)
=)

Ii(z) < (o +¢) (7.9)

while
(1—|z])2(2) = 0,
uniformly as [z] = 1. Using also (2.1), Theorem 1 and (7.8) we see that
lim sup (1 — |2{) log|f{2)] € 2c

as |z| — 1, while z lies outside an F set Fy. So if F, is the circular projection of Fj onto the

positive axis we have
lim sup (I — ) log M(r, f) € 2q, (7.10)

as 7 — 1 outside #). To prove the opposite inequality, choose © so that o{0) = . Such a
choice is possible by (7.7). Then we deduce from (2.2) that, as r —+ 1 outside an F'-get F,

(1 -7)log|f(re’®)| — 2.

Hence
lim inf (1 - r)log M(r) > 2¢,

asr — 1 outside F. Combining this with (7.10) we obtain (2.5) and the Corollary is proved.
By applying the result to 1/f, we deduce that
lim(1 —7) li}rl_f log| f(#)} = min a(©).

=L

In particular

(1 —|2]) log|f(2)|
is bounded above and below as |2| = 1, while z lies outside an F — set. As a special case we
obtain the following result of Saginyan [10)].

Theorem A. Let p(t) be o continuous function for 0 <t < 1, such that p(t) — co ast — 1. Let
I be o continuous curve in A ending at a point an C. If f is bounded in A\ and

(1= lz) log|f(2)] < —p(lz]), zel
Cthen f = 0.

In fact by Theorem 1 and (2.1) it is only necessary to assume that I” is a subset of A which is
not an I — set, and that f is a meromorphic function of bounded characteristic in A
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