Approximate identities in Banach function algebras

H. G. Dales, Lancaster

National University of Ireland, Maynooth, 19 June 2013

In honour of the retirement of Anthony G. O’Farrell

Work in progress with Ali Ülger, Istanbul
Definitions

Let K be a locally compact space. Then $C_0(K)$ is the space of all complex-valued, continuous functions on K that vanish at infinity. This is a commutative Banach algebra with respect to the uniform norm $|\cdot|_K$.

A function algebra on K is a subalgebra of $C_0(K)$ such that, for $x, y \in K$ with $x \neq y$, there is $f \in A$ with $f(x) \neq f(y)$, and, for each $x \in K$, there is $f \in A$ with $f(x) \neq 0$.

A Banach function algebra on K is a function algebra A that is a Banach algebra for a norm $\| \cdot \|$, so that $\|fg\| \leq \|f\| \|g\|$ for $f, g \in A$.

Necessarily, $\|f\| \geq |f|_K$ for $f \in A$.

The algebra A is a uniform algebra if it is closed in $C_0(K)$.
Natural Banach function algebras

A Banach function algebra A on K is **natural** if every character on A has the form $f \mapsto f(x) = \varepsilon_x(f)$ for some $x \in K$. Equivalently, every maximal modular ideal has the form

$$M_x = \{ f \in A : f(x) = 0 \}$$

for some $x \in K$.

Every commutative, semisimple Banach algebra is a Banach function algebra on its character space.
Approximate identities

Let \((A, \| \cdot \|)\) be a natural Banach function algebra on \(K\).

An approximate identity is a net \((e_\alpha)\) in \(A\) such that \(\|fe_\alpha - f\| \to 0\) for each \(f \in A\).

A pointwise approximate identity is a net \((e_\alpha)\) in \(A\) such that \(e_\alpha \to 1\) pointwise on \(K\).

Clearly, each approximate identity is a pointwise approximate identity.

These approximate identities \((e_\alpha)\) are bounded if \(\sup \|e_\alpha\| < \infty\) (and the sup is the bound); they are contractive if the bound is 1. Say BAI and BPAI, CAI and CPAI.

The algebra \(A\) is (pointwise) contractive if every \(M_x\) has a C(P)AI.

We are interested in the best bound of BAI's.
Factorization

Let A be an algebra. Then

$$A^2 = \{ab : a, b \in A\}, \quad A^2 = \text{lin } A^2.$$

Cohen's factorization theorem Let A be a commutative Banach algebra. Then the following are equivalent:

(a) A has a BAI of bound m;

(b) for each $\varepsilon > 0$, each $a \in A$ can be written as $a = bc$, where $\|b\| \leq m$ and $\|a - c\| < \varepsilon$ (and so $A = A^2$, and A factors).

[Much more is true.]
Examples

(I) Take K compact and $A = C(K)$. Then every M_x has a CAI.

Are there any more (pointwise) contractive uniform algebras?

(II) Let G be a LCA group (e.g., $G = \mathbb{Z}$ or $G = \mathbb{R}$), and let A be the group algebra $(L^1(G), \star)$. The Fourier transform maps $L^1(G)$ onto the Fourier algebra $A(\Gamma)$, where Γ is the dual group to G.

Now $A(\Gamma)$ is a natural Banach function algebra on Γ. The algebra $A(\Gamma)$ always has a CAI, and all the maximal modular ideals M_γ have a BAI, of bound 2 (very standard); further, ‘2’ is the best bound of a BAI in M_γ (less well-known; Derighetti).
More examples

Look at natural Banach function algebras on $I = [0, 1]$.

(III) Take $A = \text{Lip}_\alpha(I)$, where $\alpha > 0$, so that

$$\|f\|_\alpha = |f|_I + \sup \left\{ \frac{|f(x) - f(y)|}{|x - y|^\alpha} \right\}$$

for $f \in A$. If $f(0) = 0$ and $f(1/n) = 1$, then $\|f\| \sim n^\alpha$, so there are no BPAI in M_0.

(IV) Look at $BVC'(I)$, the algebra of continuous functions of bounded variation on I. Here

$$\|f\|_{var} = |f|_I + \text{var}(f)$$

for $f \in BVC'(I)$. There is an obvious BAI in M_0 of bound 2.
The Choquet boundary

Let A be a Banach function algebra on K.

A closed subset F of K is a **peak set** if there exists a function $f \in A$ with $f(x) = 1$ ($x \in F$) and $|f(y)| < 1$ ($y \in K \setminus F$); in this case, f **peaks** on F; a point $x \in K$ is a **peak point** if \{x\} is a peak set, and a **p-point** if \{x\} is an intersection of peak sets. The set of p-points of A is $\Gamma_0(A)$, the **Choquet boundary** of A. Its closure is the **Šilov boundary**.

Theorem Let A be a Banach function algebra on K. Then M_x has a BAI $\Rightarrow x \in \Gamma_0(A)$. \square

Example Let A be the disc algebra on \overline{D}. Then \{f \in A : f(0) = 0\} does not have a BAI. This is obvious anyway. \square
Uniform algebras

Theorem Let A be a uniform algebra on compact K. Then the following are equivalent:

(a) $x \in \Gamma_0(A)$;

(b) M_x has a BAI;

(c) ε_x is an extreme point of the state space;

(d) M_x has a CAI.

The implication (a) \Rightarrow (d): Take f that peaks at x. Then $(1_K - f^n : n \in \mathbb{N})$ is a BAI of bound 2 for M_x. One can modify the functions f^n into functions $g_n \in A$ such that $(1_K - g_n : n \in \mathbb{N})$ is a CAI for M_x. \square

Definition A natural uniform algebra on a compact space K is a **Cole algebra** if $\Gamma_0(A) = K$.

Important fact There are Cole algebras other than $C(K)$.

9
First question

Question What is the relation between the existence of a CPAI and a CAI in Banach function algebras?

Remark Suppose that there is a bounded net \((e_\alpha)\) in \(A\) such that \(fe_\alpha \to f\) weakly for each \(f \in A\). Then \(A\) has a BAI, with the same bound.

Original example – Jones and Lahr, 1977

Let \(S = (\mathbb{Q}^+, +)\) be the semigroup of strictly positive rational numbers. The semigroup algebra \(A = (\ell^1(S), \star)\) is a natural Banach function algebra on \(\hat{S}\), the collection of semi-characters on \(S\). Then there is a sequence \((n_d)\) in \(\mathbb{N}\) such that \((\delta_1/n_d)\) is a CPAI for \(A\). However, \(A\) does not have any approximate identity.

This example is not pointwise contractive. \(\square\)
First question - more examples

Example Let G be a LCA group that is not compact. Then the minimum bound of a BAI in a maximal ideal of $A(\Gamma)$ is 2. We can show that the minimum bound of a BPAI in a maximal ideal is

$$\frac{1}{2}(1 + \sqrt{2}) > 1,$$

so $L^1(G)$ is not pointwise contractive. We do not know if this constant is best-possible. □

Example Let G be a LCA group that is not discrete. Let $A = \left\{ f \in L^1(G) : \hat{f} \in L^1(\Gamma) \right\}$, with $\|f\| = \max\{\|f\|_1, \|\hat{f}\|_1\}$. Then A is a natural Banach function algebra on Γ. It has a CPAI, but no BAI. □
First question - more examples

Example Let $B = (L^1(\mathbb{R}), \ast)$. Then there is a singular measure μ_0 on \mathbb{R} such that $\mu_0 \ast \mu_0 \in B$ (Hewitt). Look at $A = B \oplus \mathbb{C} \mu_0$ as a closed subalgebra of $(M(\mathbb{R}), \ast)$. Then A has CPAI, but no approximate identity at all because $A^2 = B$, which is not dense in A. (Hence CPAI \nRightarrow factorization.)

Example Let A be a Banach function algebra that is reflexive as a Banach space. For example, take the set of sequences $\alpha = (\alpha_n)$ on \mathbb{Z}^+ such that

$$
\|\alpha\| = \left(\sum_{n=0}^{\infty} |\alpha_n|^2 (1 + n)^2 \right)^{1/2} < \infty,
$$

with convolution product, giving a Banach function algebra on \mathbb{D}.

Suppose that M_x has a BPAI. Then A contains the characteristic function of $K \setminus \{x\}$, and so x is isolated. Thus maximal ideals of our example do not have BPAIs. □
Uniform algebras

So far we have not given a pointwise contractive Banach function algebra that is not contractive.

Fact Let A be a natural uniform algebra on K. Suppose that A has a BPAI (respectively, CPAI) that is a sequence. Then A has a BAI (respectively, CAI).

Proof Suppose that (f_n) is bounded and $f_n \to 1$ pointwise on K. Then $f_n \to 1$ weakly by the dominated convergence theorem. An earlier remark now shows that A has a BAI, with the same bound.

\[\square\]
Feinstein’s example

Example Joel Feinstein has an amazing example of a natural uniform algebra A on a compact, metrizable space K such that there is a point $x_0 \in K$ with $\Gamma_0(K) = K \setminus \{x_0\}$.

The construction is a modification of Cole’s original construction.

Take $M = M_{x_0}$. Each finite F disjoint from x_0 is a peak set, and so there exists $f_F \in M$ that peaks on F. The net $\{f_F\}$ is a CPAI for M. All the other M_x have a CAI, so A is pointwise contractive. But M does not have a BAI because x_0 is not a peak point, and so A is not contractive. (However M factors.)
Second question

Question Let A be a pointwise contractive, natural Banach function algebra. Is A necessarily a uniform algebra?

Let A be a contractive, natural Banach function algebra. Is A necessarily a Cole algebra?
A special case

Definition Let S be a non-empty set. A **Banach sequence algebra** on S is a Banach function algebra A on S such that $c_{00}(S) \subset A$.

Theorem Let A be a pointwise contractive, natural Banach sequence algebra on a set S. Then $A = c_0(S)$.

This follows from a classical theorem of Bade and Curtis:

Theorem Let A be a Banach function algebra on a compact K. Suppose that there is $m > 0$ such that for disjoint, closed F and G in S, there is $f \in A$ with $|f|_F < 1/2$, $|1 - f|_G < 1/2$, and with $\|f\| \leq m$. Then $A = C(K)$. \[\Box\]
The BSE norm

Definition Let A be a natural Banach function algebra on K. Then $L(A)$ is the closed linear span of $\{\varepsilon_x : x \in K\}$ as a subset of A', and

$$\|f\|_{BSE} = \sup \{|\langle f, \lambda \rangle| : \lambda \in L(A)\} \quad (f \in A).$$

The abbreviation ‘BSE’ stands for Bochner–Schoenberg–Eberlein because of their theorem that characterizes the Fourier–Stieltjes transforms of the bounded Borel measures on LCA groups. The BSE-norm was introduced by Takahasi and Hatori in 1990.

Clearly

$$|f|_K \leq \|f\|_{BSE} \leq \|f\| \quad (f \in A).$$

Definition Let A be a natural Banach function algebra on K. Then A has a **BSE norm** if there is a constant $C > 0$ such that

$$\|f\| \leq C \|f\|_{BSE} \quad (f \in A).$$
Examples of BSE norms

(1) Trivially every uniform algebra has a BSE-norm.

(2) Let \(G \) be a LCA group and \(A = L^1(G) \). Then \(\| \cdot \|_1 = \| \cdot \|_{BSE} \) for \(A \).

(3) Take \(\alpha > 0 \), and consider \(A = \text{Lip}_\alpha(\mathbb{I}) \) and \(A = \text{lip}_\alpha(\mathbb{I}) \). Then \(\| \cdot \|_\alpha = \| \cdot \|_{BSE} \) for \(A \).

(4) Suppose that \(A \) is an ideal in \((A'', \Box) \) and \(A \) has a BPAI. Then \(A \) has a BSE norm. This covers Banach function algebras which are reflexive as Banach spaces, and all Banach sequence algebras on \(S \) with \(c_{00}(S') \) dense.
A Banach sequence algebra with BSE norm

Here is another example of Feinstein.

Example For $\alpha = (\alpha_k) \in \mathbb{C}^\mathbb{N}$, say $\alpha \in A$ if

$$
\|\alpha\| = |\alpha|_\mathbb{N} + \sup_{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n} k |\alpha_{k+1} - \alpha_k| < \infty .
$$

Then A is a natural Banach sequence algebra on \mathbb{N}.

Each maximal modular ideal of A has a BPAI of bound 4. However A^2 is a closed subspace of infinite codimension in A, and so A does not have any approximate identity.

Clearly $c_{00}(S)$ is not dense in A. However again $\| \cdot \|_{BSE} = \| \cdot \|$.

We note that the Banach algebra A is not separable.

Query Do all natural Banach sequence algebras have a BSE norm?
Embarrassing fact

So far we have not actually found a Banach function algebra that does not have a BSE norm.
Specific open questions

Query Let Γ be a locally compact group, not necessarily abelian. There is a Fourier algebra $A(\Gamma)$. It is a natural, strongly regular Banach function algebra on Γ.

The following are equivalent: (a) Γ is amenable; (b) $A(\Gamma)$ has a BPAI; (c) $A(\Gamma)$ has a BAI; (d) $A(\Gamma)$ has a CAI. In these cases, $A(\Gamma)$ has a BSE norm.

If Γ is not amenable, does $A(\Gamma)$ have a BSE norm?

Query Let K and L be locally compact spaces, and set $V(K, L) = C_0(K) \hat{\otimes} C_0(L)$, the Varopoulos algebra.

Here $\|F\|_\pi = \inf \sum_{j=1}^n |f_j|_K |g_j|_L$ taken over all representations $F = \sum_{j=1}^n f_j \otimes g_j$. This is the projective tensor norm.

We know that $c_0 \hat{\otimes} c_0$ has a BSE norm. Does $V(K, L)$ always have a BSE norm?
A theorem

Proposition Suppose that A is pointwise contractive. Then $\|f\|_{BSE} \leq 4\sqrt{2}|f|_K$ ($f \in A$). \qed

Theorem Let A be a natural Banach function algebra on K such that A has a BSE-norm.

Suppose that A is pointwise contractive. Then A is a uniform algebra.

Suppose that A is contractive. Then A is a Cole algebra.

Proof Combine some earlier results. \qed