
DIVIDING AN ANGLE INTO EQUAL PARTS

STEPHEN BUCKLEY AND DESMOND MACHALE
Department of Mathematics, University College, Cork

The problem of finding a geometric construction in a finite number of steps to
trisect an arbitrary angle using straightedge and compasses alone is a very old
one, originally proposed by the mathematicians of ancient Greece. It was only
with modern algebraic techniques in the nineteenth century that it was shown
conclusively that no such construction can exist. This fact has in no way deterred
a legion of crank angle-trisectors from presenting their alleged solutions to the
problem! However some angles (even non-constructible ones) can be trisected:
we’ll see later, for example, that given an angle π/7 it can be trisected. We can
also consider the more general problem:

For which natural numbers n > 2 does there exist a geometric construction in
a finite number of steps to divide an arbitrary angle into n equal parts, using
straightedge and compasses alone?

For convenience, let T be the set of all such natural numbers n. Many textbooks
on algebra contain a proof that 3 /∈ T . The proof usually depends on the fact that
the angle 60◦ is not trisectible because the number cos 20◦ is not constructible (see
[3] and [4]). The angle 60◦ is chosen because of the convenient fact that cos 60◦ is
rational. Another way of looking at this proof is that a regular polygon with 18
sides is not constructible. In fact, we can easily decide which integers n belong to
T once we know the integers for which a regular n-sided polygon is constructible.
The following classical theorem is quoted in [1] and [5].

For n > 2 a regular n-sided polygon is constructible by straight-edge and compass
alone if and only if n is either of the form 2k for an integer k or of the form
2mp1 · · · pr for integer m and distinct primes p1, . . . , pr of the form 22

s

+ 1 (the
‘Fermat primes’).

Before proceeding, note the following elementary facts about T , which the reader
will be able to confirm with a little thought:

(*) If n ∈ T and k | n, then k ∈ T .

(**) If n ∈ T then n2 ∈ T .

We are now able to show that T consists just of the powers of 2. In other words
an arbitrary angle can be bisected over and over again but, apart from that, no
other general construction to ‘n-sect’ an angle exists.

THEOREM. For positive integer n there exists a construction by straightedge and
compasses to divide an arbitrary angle into n equal parts if and only if n is a power
of 2.

Proof. The “if” part of the theorem is easy, being merely the above observation
that the angle can be repeatedly bisected.
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Suppose now that n ∈ T and that n > 2. Then there must exist a construction
for dividing the angle 360◦ into n equal parts. The angle (360/n)◦ is the exterior
angle of a regular n-sided polygon and so such a polygon can be constructed. Hence,
by the result quoted above, n must have the form 2k for an integer k or the form
2mp1 · · · pr where p1, . . . , pr are distinct Fermat primes. If n is not a power of 2
then, for some Fermat prime p, we have p | n. Hence, by (*), p ∈ T and, by
(**), p2 ∈ T . It is therefore possible to construct a regular p2-sided polygon. That
contradicts the result quoted above and so n must be a power of 2, as claimed.

Let us coin the phrase “α is n-sectible” if it is possible to divide the given angle
α into n equal parts using straightedge and compasses alone. In the proof of the
theorem the concepts of constructibility and n-sectibility are closely intertwined,
but there is no inherent connection between the two concepts. Recall for example
that an arbitrary angle, whether constructible or not, can always be bisected. Also,
for particular values of α and n, the angle α can be used to construct α/n. We
proceed to discuss the four a priori possibilities and show that all four possibilities
do in fact occur.

(a) Constructible and n-sectible. Here we merely require an angle α and a positive
integer n such that both α and α/n are constructible. This is trivially achieved by
taking α to be n times a constructible angle (e.g. α = nπ/2k where 2k > n).

(b) Constructible but not n-sectible. Here we merely require α to be constructible
but α/n not to be. For example 60◦ is constructible but not trisectible (since 20◦

is not constructible). We now outline the fact that if p is an odd prime and m
an integer with 1 ≤ m < p, then α = cos−1(m/p) is constructible but α/3 is not.
(Indeed very similar arguments show that α/n fails to be constructible for any n
which is not a power of 2.)

Clearly m/p is constructible and hence so is α = cos−1(m/p). On the other hand
α/3 is constructible if and only if x = cos(α/3) is constructible. But

m

p
= cosα = 4 cos3

(α
3

)
− 3 cos

(α
3

)
= 4x3 − 3x

and so x satisfies the polynomial equation

4px3 − 3px−m = 0 .

Eisenstein’s irreducibility criterion ([2], Theorem 3.10.2) shows that this polynomial
is irreducible and it follows from Theorem 5.4.1 of [2] that, as the degree of this
polynomial is not a power of 2, then x is not constructible.

(With α/3 replaced by α/n one gets a polynomial of the form

2n−1pxn + pqn−1x
n−1 + · · ·+ pq1x+ (pq0 −m) = 0
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for some integers q0, . . . , qn−1 and similar reasoning shows that α/n is not con-
structible.)

(c) Not constructible but n-sectible. The angle π/7 (radians) is not constructible
but, as well as being bisectible etc., it is also trisectible since

π

21
=

π

3
− 2

π

7

which is a combination of the constructible angle π/3 and the given angle π/7.
Many other angles which are not constructible but trisectible (or, more generally,
n-sectible) can be found in this way. For example if p > 3 is a prime but not a
Fermat prime then π/p2k is not constructible. Also there exist integers s, t with
3s+ tp = 1. Therefore

π

p2k
=

(3s+ tp)

p2k
π =

3sπ

p2k
+

tπ

2k

not constructible
constructible

and so 3π/p2k is not constructible. However if we are given the angle 3π/p2k then
the above relation shows that π/p2k can be constructed from it. Hence 3π/p2k is
not constructible but it is trisectible. (Similar arguments work for any n which is
not a power of 2.)

Not all examples need be rational multiples of π. As an alternative method
consider the continuous function f : [0, π/6] → [0,

√
3/2] given by f(θ) = cos θ −

cos 3θ. If p is a prime and m a positive integer with m/p <
√
3/2 then, by the

continuity of f , m/p = f(θ) for some θ. Hence

m

p
= cos θ − cos 3θ = 4 cos θ − 4 cos3 θ

and
4px3 − 4px+m = 0,

where x = cos θ. As in (b) it follows that x (and θ) are not constructible. Also,
since

cos θ =
m

p
+ cos 3θ

it follows that cos 3θ (and 3θ) are not constructible. But if we are given 3θ then
the above relationship shows that we can construct θ. Hence 3θ is not constructible
but it is trisectible.

(d) Neither constructible nor n-sectible. This is perhaps the most interesting and
the most difficult case to consider as no contradiction follows from showing that α/n
is not constructible. One needs to move into the theory of field extensions, extending
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the field QQQ by the addition of cosα. By such methods it is possible to prove that if
p is an odd prime and m an integer with 1 ≤ m < p then 1

3 cos
−1(m/p) is n-sectible

if and only if n is a power of 2. So choosing m and p so that 1
3 cos

−1(m/p) is not
constructible ensures, for example, that it is neither constructible nor trisectible.

Finally, we leave the reader with a number of questions for investigation.

(i) Which angles with a rational cosine are trisectible? Note that
cos−1((3p2 − 4)/p3) is trisectible for any prime p.

(ii) Find a trisectible angle cos−1(a/b) with a, b positive integers and a + b as
small as possible.

(iii) Discuss the problem of n-secting the angle sin−1(m/p).
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