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Abstract. We find all isoclinism families of groups with commuting proba-
bility 1/3.

1. Introduction

We define the commuting probability of a finite group G to be

(1) Pr(G) :=
|{(x, y) ∈ G×G : xy = yx}|

|G|2
,

where |S| denotes cardinality of a set S. Much has been written on this concept:
see for instance [5], [13], [8], [16], [21], [14], [4], [7], [3], and [11]. In particular,
Pr(G) is an isoclinism invariant [14, Lemma 2.4], so to understand which groups
have a given commuting probability t, it suffices to find all isoclinism families
with commuting probability t. If F is an isoclinism family containing a finite
group G, we call F a finite family and define Pr(F) to be Pr(G).

Lescot [14] found all families F with Pr(F) ≥ 1/2, and the results of Rusin
[21] allow one to determine all F with Pr(F) > 11/32. In this paper, we find all
finite families F for which Pr(F) = 1/3.

Theorem 1. There are precisely three finite families F with Pr(F) = 1/3. Each
has a unique stem group, namely the alternating group A4, the dihedral group
D9, and the generalized dihedral group Dih(C3 × C3).

We chose the value 1/3 above because it is an interesting cutoff value. Barry,
MacHale, and Nı́ Shé [2] showed that a finite group G is supersolvable if Pr(G) >
1/3, and noted that this lower bound is minimal because the alternating group
A4 is not supersolvable and satisfies Pr(A4) = 1/3. Lescot, Nguyen, and Yang
[15, Corollary 2] showed that for these properties, A4 is essentially unique: if
Pr(G) ≥ 1/3 and G is not supersolvable, then G is isoclinic to A4.

After some background material in Section 2, we prove Theorem 1 in Section 3.

2. Preliminaries

Throughout the remainder of the paper, G is always a group. Our notation is
standard, except for the following: [G, x] is the subset {[y, x] | y ∈ G} of G, and
CH(x) is the centralizer of x ∈ G in the subgroup H ≤ G (this is the subgroup of
H consisting of all h ∈ H that commute with x). A group is said to be capable
if it is isomorphic to G/Z(G) for some group G.
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We also use fairly standard notation for a few well-known groups. Cn is the
cyclic group of order n and, if n ≥ 3, Sn is the symmetric group of order n!,
An is the alternating group of order n!/2, Dn is the dihedral group of order 2n,
Q2 is the quaternion group of order 8, and Dih(N) is the generalized dihedral
group of order 2|N | that has a subgroup isomorphic to N ; specifically, Dih(N) :=
N oφ C2, where φ(x) is the inversion automorphism of N for the generator x of
C2. For every other explicitly mentioned group, we use the GAP ID: specifically,
Gp(n,m) denotes the group with GAP ID (n,m). Some computations in this
paper were made using GAP; for more on GAP, see [6].

Isoclinism is an equivalence relation for groups that was introduced by Hall
[10], and is widely used in the group theory literature. For the definition of
isoclinism, we use G×2 as an alternative notation for the set G × G; here, the
group structure of G×G is irrelevant. If φ : G → H, then φ×2 : G×2 → H×2 is
the natural product map.

Observation 2. Since [g1, g2] = [g1z1, g2z2] for all g1, g2 ∈ G and all z1, z2 ∈
Z(G), the commutator map induces a natural map

κG : (G/Z(G))×2 → G′

(g1Z(G), g2Z(G)) 7→ [g1, g2] .

Definition 3. A pair of groups, G and H, are said to be isoclinic if there are
isomorphisms φ : G/Z(G) → H/Z(H) and ψ : G′ → H ′ such that ψ([a, b]) =
[a′, b′] whenever φ(aZ(G)) = a′Z(H) and φ(bZ(G)) = b′Z(H). Equivalently, the
diagram in Figure 1 commutes, where κG, κH are as in Observation 2.

We call (φ, ψ) an isoclinism from G to H, and write G ∼ H if G is isoclinic
to H. The isoclinism equivalence class containing a given group G is called the
family of G.

(G/Z(G))×2
φ×2

'
//

κG

��

(H/Z(H))×2

κH

��

G′
ψ
'

// H ′

Figure 1. Isoclinism

As mentioned in the introduction, a finite family is a family F that contains
a finite group G, and Pr(F) := Pr(G) is well-defined because Pr(·) is a family
invariant (when restricted to finite groups).

As proved by Hall [10], every family F has one or more stem groups, meaning
groups G in the family satisfying Z(G) ≤ G′. In a finite family F , stem groups
are precisely the groups of minimal order in F , and all other finite groups in F
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have order a multiple of |G|. Consequently, a finite family F contains groups of
odd order if and only if its stem groups have odd order, in which case we call F
an odd family.

The next lemma is well known [13]. It is also a straightforward corollary of

the degree equation |G| =
∑k

i=1 d
2
i (where the numbers di are the degrees of the

irreducible complex representations of G), and the fact that the number of linear
complex characters of G equals (G : G′).

Lemma 4. Let p be the smallest prime divisor of |G|. Then

(2) Pr(G) ≤ 1

p2

(
1 +

p2 − 1

|G′|

)
,

with equality if and only if all nonlinear irreducible complex representations of G
are of degree p.

We will need the following pair of results of Rusin, which both concern p-groups
of nilpotency class at most 2. The first result is a rewording of [21, Proposition 2],
while the second follows from the first result and [21, Theorem 1].

Proposition 5. If G is a p-group for some prime p, with G′ ≤ Z(G) and G′

cyclic, then G/Z(G) can be written as a direct product A × A, where A is an
abelian p-group. Furthermore, the maximal orders of elements in A and G′ are
the same.

Theorem 6. Suppose G is a p-group for some prime p, with G′ ≤ Z(G). Then

(3) Pr(G) =
1

|G′|

1 +
p− 1

p

∑
K

(G′ : K)

(G : K∗)

 ,

where the sum is over all K ≤ G′ for which G′/K is a nontrivial cyclic group,
and K∗ denotes the subgroup of G consisting of all x ∈ G such that [G, x] ⊂ K.
In particular, if G′ ' Cp and so G/Z(G) ' C2k

p for some k ∈ N, then

(4) Pr(G) =
p2k + p− 1

p2k+1
.

We next state a few other results from the literature that we need.

Theorem 7 ([20, Theorem 5]). If G is a finite group with Z(G) = {1}, then
CG(G′) ≤ G′.

Theorem 8 ([12, Theorem 4.9]). If G′ ' C2n, then G is nilpotent of class at
most n+ 1.

Theorem 9 ([15, Corollary 2]). If G is a finite group with Pr(G) ≥ 1/3, then
either G is supersolvable or G is isoclinic to A4.

Lemma 10 ([2, Lemma 3.13]). If G′ ' C2 × C2, then either

(a) G is nilpotent, or
(b) G/Z(G) ' A4, G

′ ∩ Z(G) = {1}, and Pr(G) = 1/3.
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Theorem 11 ([1, Theorem 3]). A group G has all its irreducible complex rep-
resentations of degree at most 2 if and only if one of the following conditions
holds:

(a) G is abelian.
(b) G has an abelian subgroup H of index 2.
(c) G/Z(G) is an abelian group of order 8.

Lemma 12 ([9, Corollary 3.2]). A finite Abelian group is capable if and only if
its two largest invariants coincide, i.e. if and only if it has the form Cn×Cn×H
for some n ∈ N, where all elements in H have order dividing n.

3. Proofs

Before we prove our main result, we state and prove three preparatory lemmas.

Lemma 13. If G is a finite group with Z(G) = {1}, then |G| is a divisor of
|Z(G′)| · |AutG′|.

Proof. Since G′ is a normal subgroup of G, conjugation of G′ by elements of G
defines a homomorphism φ : G → AutG′. Thus |G| ≤ |AutG′| · | kerφ|. Since
kerφ = CG(G′), the result follows from Theorem 7. �

Lemma 14. Suppose G is a finite nilpotent stem group with Pr(G) = m/n for
some coprime positive integers m and n. Then the prime factors of |G| are the
same as those of n.

Proof. We assume without loss of generality that G is not abelian. It is readily
verified that Pr(H ×K) = Pr(H) Pr(K), so Pr(G) is the product of Pr(P ) as P
ranges over all Sylow subgroups of G.

It follows readily from the fact that Z(G) ≤ G′ that none of the Sylow sub-
groups of G is abelian. For a nonabelian p-group, it is clear that Pr(G) is of the
form a/b, where a, b are coprime positive integers and b = pk for some k ∈ N.
Consequently, the prime factors of n are precisely the prime factors of |G|, as
required. �

The last of our three lemmas gives the commuting probability of all nonabelian
groups that have an abelian subgroup of index 2. A more general version of this
result was proved by Nı́ Shé [19, Theorem 1.3.6], but we include a proof for
completeness.

Lemma 15. Suppose G is a finite non-abelian group containing an abelian sub-
group H of index 2. Then Z(G) is a proper subgroup of H, and Pr(G) =
(n+ 3)/4n, where n = (H : Z(G)).

Proof. H is a normal subgroup of G by virtue of the fact that it has index 2 in
G. Let us choose x ∈ G \ H. Since G is nonabelian, x must fail to commute
with some u ∈ H. Each g ∈ G can be written uniquely in the form hxi for some
h ∈ H and i ∈ {0, 1}. It is clear that for all h ∈ H, hx fails to commute with u,
and so Z(G) ⊂ H \ {u}. Thus Z(G) is a proper subgroup of H.
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Let us write m := |Z(G)|, and so |G| = 2mn. Recall that the number of
conjugates of an element y ∈ G equals (G : CG(y)). In particular, y has only
a single conjugate if y ∈ Z(G), or exactly two conjugates if y ∈ H \ Z(G). We
claim that y has exactly n conjugates when y ∈ G \H. Assuming this claim, we
see that the number of conjugacy classes in G is

k(G) := |Z(G)|+ |H| − |Z(G)|
2

+
|G| − |H|

n
= m+

mn−m
2

+
mn

n
=

(n+ 3)m

2
.

In view of the well known equation Pr(G) = k(G)/|G|, the result follows.
To prove the claim, we need to verify that |CG(y)| = 2m whenever y = gx

for some g ∈ H. Suppose y commutes with h ∈ H. Then x−1g−1hgx = h. But
g−1hg = h, so we have x−1hx = h. This holds exactly when h ∈ CH(x) = Z(G).
We conclude that |CG(y) ∩H| = |Z(G)| = m.

Suppose next that y commutes with v := hx for some h ∈ H, and so [hx, gx] =
1. Now [hx, gx] = x−1wx, where w := h−1x−1g−1hxg, so we must have w = 1.
Because H is normal in G, we see that c := x−1g−1hx ∈ H, and so

w = h−1cg = h−1gc = [d, x] = 1 ,

where d := g−1h ∈ H. Thus y commutes with v if and only if g−1h ∈ Z(G), and
so there are |Z(G)| = m elements v ∈ G \ H that commute with y. Since we
already know that |CG(y) ∩H| = m, the claim follows. �

In the following proof, we consider isomorphic groups to be the same whenever
it is convenient.

Proof of Theorem 1. Suppose first that G is a stem group of odd order with
Pr(G) = 1/3. The right-hand side of (2) is a decreasing function of p, so

1

3
≤ 1

32

(
1 +

32 − 1

|G′|

)
,

and this inequality can be rewritten as |G′| ≤ 4. Since G is of odd order and
nonabelian, we must have |G′| = 3 and, since G is a stem group, it follows that
either Z(G) = G′ or Z(G) = {1}.

If Z(G) = G′, then G is nilpotent, and by Lemma 14, G is a 3-group. But
then (4) implies that Pr(G) > 1/3, giving a contradiction. Suppose instead that
Z(G) = {1}. By Lemma 13, |G| ≤ |G′| · |AutG′| = 3 · 2. But all groups of
odd order at most 6 are abelian, giving a contradiction. This rules out all odd
families.

Thus G must be an even order stem group with Pr(G) = 1/3. However, the
equation Pr(G) = 1/3 also forces |G| to be divisible by 3, so |G| must in fact be
divisible by 6. Applying Lemma 14 with (m,n) = (1, 3), we see that G cannot
be nilpotent, and so Z(G) must be a proper subgroup of G′.

By appealing again to (2), we see that

1

3
≤ 1

22

(
1 +

22 − 1

|G′|

)
,
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and so |G′| ≤ 9.
We examine separately the various possibilities for the isomorphism class of G′.

First, consider the case where |G′| is a prime p. Since Z(G) is a proper subgroup
of G′, we must have Z(G) = {1}. By Lemma 13, |G| ≤ p(p − 1). On the other
hand, |G| is divisible both by 6 and by p = |G′|. This gives a contradiction when
p ∈ {2, 5}. For p = 3, we need only check nonabelian groups of order 6. There
is only one of these, namely S3, and Pr(S3) = 1/2, so we get a contradiction.

Finally for p = 7, it suffices to examine nonabelian groups of order 42. There
are five of these, but three (S3 × C7, D7 × C3, and H × C2, where H is the
nonabelian group of order 21) are decomposable and can be eliminated because
they have a nontrivial center. The remaining two groups are ruled out quickly
using GAP: Pr(Gp(42, 1)) = 1/6 and Pr(Gp(42, 5)) = 2/7.

Suppose instead that |G′| = 4. Since G is not nilpotent, we rule out G′ = C4

by Theorem 8, and so we must have G′ ' C2×C2. Since G is not nilpotent and
Z(G) ≤ G′, it follows from Lemma 10 that G ' A4. By Theorem 9, we may
assume from now on that G is supersolvable.

We next consider |G′| = 6. According to [17, p. 126], there is no group G with
G′ ' S3, so we only have to examine G′ ' C6. Now G′ contains a unique element
t of order 2, and G′ is normal in G so x−1tx must equal x for all x ∈ G. Thus
t ∈ Z(G). Since also Z(G) is a proper normal subgroup of G′, it follows that
Z(G) ' C2. Now

(G/Z(G))′ = G′Z(G)/Z(G) = G′/Z(G) ' C3

and Z(G/Z(G)) = {1} (since otherwise G/Z(G), and hence G, is nilpotent), and
so by Lemma 13, |G/Z(G)| ≤ 3 · 2. Thus |G| ≤ 12 and |G| is divisible by 6. We
have already ruled out groups of order 6. No group of order 12 has a derived
subgroup of order 6, so we have eliminated all groups with |G′| = 6.

We next consider |G′| = 8. There are five groups of order 8. By Theorem 8,
we can eliminate G′ ' C8. According to [17, p. 125], no group has G′ ' D4 and,
according to [2, Remark 3.3], Pr(G) < 1/3 if G′ ' Q2. (Alternatively, by [12,
Theorem 7], there is no supersolvable group with G′ ' Q2.) There remain the
possibilities that G′ ' C4 × C2 or G′ ' C2 × C2 × C2.

Suppose first that G′ ' C4 × C2. If c is an element of order 4 in G′, then all
automorphisms of G′ fix c2, so c2 must be central in G. Thus |Z(G)| must equal
either 2 or 4. If |Z(G)| = 2, then as before (G/Z(G))′ ' C2×C2. Lemma 10 now
implies that either G/Z(G) is nilpotent or its central quotient group is isomorphic
to A4. Both of these lead to contradictions: the first because it implies that G
is nilpotent, and the second because A4 is not supersolvable, so G/Z(G) and G
also fail to be supersolvable.

Suppose instead that G′ ' C2 × C2 × C2. We cannot have Z(G) ' C2 × C2,
since then (G/Z(G))′ = G′/Z(G) ' C2, and G would be nilpotent by Theorem 8
as before. If Z(G) ' C2, then (G/Z(G))′ ' C2 × C2, and we rule this out as in
the previous paragraph.
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Finally, suppose Z(G) = {1}. By Lemma 13, we see that |G| is a divisor of
8 · (7 · 6 · 4) = 1344 and also |G| is a multiple of both 6 and |G′| = 8. Thus
|G| is a multiple of 24. A search in GAP reveals that there are no groups G
satisfying |G′| = 8 and Z(G) = {1}, with any of the eight orders dividing 1344
and divisible by 24.

Finally, we consider the case |G′| = 9. By the condition for equality in (2), we
see that all nonlinear characters have degree 2. We now appeal to Theorem 11.
Two of the possibilities there cannot arise in our setting: G cannot be abelian,
and G/Z(G) cannot be an abelian group of order 8, since then G would be
nilpotent of class 2.

The only remaining possibility is that G has an abelian subgroup H of index
2. By Lemma 15, (H : Z(G)) = n, where

1

3
=
n+ 3

4n
.

We conclude that n = 9 and so |G/Z(G)| = 18. Since Z(G) must be of order 1
or 3, we need to check groups of orders 18 and 54.

There are three nonabelian groups of order 18. One of them, S3 × C3, has
commuting probability 1/2. The other two, D9 and Dih(C3 × C3), have com-
muting probability 1/3, as required. Finally, GAP reveals that there are just
two groups G of order 54 with |G′| = 9 and Z(G) = {1}, and in both cases
Pr(G) = 5/27 6= 1/3.

We have shown that there are exactly three stem groups G with Pr(G) = 1/3.
No two of these groups are isoclinic because they have non-isomorphic derived
groups: (A4)

′ ' C2 × C2, (D9)
′ ' C9, and (Dih(C3 × C3))

′ ' C3 × C3. �

Finally, we give a corollary concerning another well-known indicator of com-
mutativity of a finite group that is somewhat analogous to Pr(G), namely the
character degree sum ratio

f(G) :=
1

|G|

k(G)∑
i=1

di ,

where d1, . . . , dk(G) are the degrees of the irreducible complex representations of
G.

Corollary 16. If G is a finite group with Pr(G) = 1/3, then f(G) is either 1/2
or 5/9.

Proof. Since f(G) is an isoclinism invariant (for which, see [18, Theorem 12]), it
suffices to compute f(G) for each of the stem groups G in Theorem 1. Now A4

has three characters of degree one, and a single irreducible character of degree 3,
so f(A4) = (3 · 1 + 3)/12 = 1/2. Both D9 and Dih(C3×C3) have two characters
of degree one and four irreducible characters of degree two, so

f(D9) = f(Dih(C3 × C3)) = (2 · 1 + 4 · 2)/18 = 5/9 . �
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