
GENERATING FUNCTIONS ASSOCIATED WITH
2-RESIDUES

JOHN MURRAY

1. Mathoverflow Question

Express the following power series in 2-variables x, y as an infinite
product, or a short sum of infinite products:

P (xy)2

(1− x)

∞∑
k=−∞

(2k + 1)xk
2

yk
2+k.

Does it have any special properties e.g. automorphic form?
**Motivation**
The *2-residue* of an integer node (x, y) in the plane is y − x mod

2. So the 2-residues alternate as 0, 1 in a checkerboard pattern. Let λ
be a partition. Its *Young diagram* [λ] consists of a set of nodes in
the plane. A node in the plane is an *addable node* of λ if it can be
adjoined to [λ] to give a partition (of |λ|+ 1).

Now define, for i = 0, 1:

(i) ci(λ) is the number of nodes in [λ] with 2-residue i.
(ii) ai(λ) is the number of addable nodes of λ with 2-residue i.

Then my power series is the generating function of∑
λ

a0(λ)xc0(λ)yc1(λ)

Here λ ranges over all partitions. I’ll leave it as an exercise to work out
the *complementary* generating function

∑
λ a1(λ)xc0(λ)yc1(λ) from the

first.
The coefficient of a given monomial xayb is the dimension of a certain

algebra, naturally associated to the symmetric group Sa+b, defined in
characteristic 2.

**Other Information**

Date: April 8, 2011.
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Using the Jacobi Triple Product identity I can factorize the generat-
ing function for the 2-residues of partitions as∑

λ x
c0(λ)yc1(λ) = P (xy)2

∞∑
k=−∞

xk
2
yk

2+k

=
∞∏
i=1

(1+x2i−1y2i)(1+x2i−1y2i−2)(1+xiyi)
(1−xiyi) .

Experts on the modular representation of the symmetric group will
understand the significance of the left hand side and the first equality.

The generating function I’m interested in can be got using partial
differentiation from this.

Also if we set x = y in the original, standard results give:∑
λ a0(λ)x|λ| = 1

2(1−x)
P (x)4+P (x2)2

P (x)3∑
λ a1(λ)x|λ| = 1

2(1−x)
P (x)4−P (x2)2

P (x)3

2. Background

The aim of this note is to provide the representation theory and
combinatorial background for Question 8 below. Many results are well-
known. Others have been stated without proof. We apologise to the
reader for omitting most references and proofs at this stage!

The partition generating function P (x) =
∑

n≥0 pnx
n, where pn is the

number of partitions of n. It can be expressed as the infinite product

P (x) =
∞∏
i=1

(1− xi)−1.

We identify a partition λ = [λ1, . . . , λl] with its Ferrer’s diagram in
R2 (oriented in the Anglo-American way i.e. the x-axis from left-to-
right, the y-axis from top-to-bottom). The nodes of λ are the integer
points (i, j) with 1 ≤ j ≤ l and 1 ≤ i ≤ λj. The content of (i, j) is the
integer c(i, j) := j − i. If e is a non-zero integer, the e-residue of (i, j)
is r(i, j) := j − i modulo e (suppressing e in the notation).

The rim R(λ) of λ is the piecewise linear curve going from∞ on the
y-axis up to l, then to (λl, l) and successively from (λj, j) to (λj, j− 1)
to (λj−1, j − 1), for j > 1, then to λ1 on the x-axis, and continuing
along the x-axis to ∞.

If (i, j) is a point in R(λ) with integer coordinates, then either
the vertical line segment [(i, j), (i, j + 1)] or the horizontal segment
[(i, j), (i + 1, j)] is contained in R(λ). In either case, we label the seg-
ment by c(i, j) = j − i. This establishes a bijection between R(λ) and
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Z. The labels of the vertical segments form the infinite sequence

β1 := λ1 − 1, . . . , βl := λl − l, βl+1 := −l − 1, βl+2 := −l − 2, . . . .

The βi are an instance of a set of β-numbers for λ.
Example: λ = [3, 2, 1, 1] has β-numbers [2, 0,−2,−3,−5,−6,−7, . . . ]
Consider an abacus with e-runners, labelled from left to right by

0, 1, . . . , e − 1 modulo e. The positions on the runner i are labelled
from top to bottom by the integers congruent to i mod e. Position
en+ i occurs immediately to the left of position en+ i+1, for i 6= e−1.
Placing beads at the positions labelled by its β-numbers gives a e-
abacus representation of a partition λ. A partition is an e-core if there
are no spaces above beads in its e-abacus representation. Note that

Lemma 1. For n ≥ 0, set Ce(n) as the number of e-cores of n. Then
∞∑
n=0

Ce(n)xn = P (x)P (xe)−e =
∞∏
i=1

(1− xie)e

(1− xi)
.

Lemma 2. The 2-cores are the triangular partitions [n, n − 1, . . . , 1],
for n ≥ 0, of the triangular numbers tn := n(n+ 1)/2.

Now if k ∈ Z, note that

2k2 + k =

{
t2k, if k ≥ 0.

t−2k−1, if k < 0.

So there is a 1-1 correspondence between integers and 2-cores:

Tk :=

{
[ 2k, 2k − 1, . . . , 1], if k ≥ 0.
[−2k−1, −2k−2 . . . , 1], if k < 0.

Note that the difference in the number of beads on runner 1 and runner
0 of Tk is always 2k.

Consider the e-abacus representation of λ. Pushing all beads as far
up the runners as possible, we get the e-abacus representation of an
e-core. This is said to be the e-core of λ. The number of bead moves
required to produce this e-core is called the e-weight of λ.

3. 2-residues

Set ci = ci(λ) as the number of nodes in λ that have 2-residue i, for
i = 0, 1. We can describe the 2-weight and 2-core of λ in terms (c0, c1).

Lemma 3. λ has 2-weight w = w(λ) = c0 − (c0 − c1)2 and 2-core Tk,
where k = c1 − c0.

More generally, we have
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Lemma 4. Let λ be a partition and let e > 0. Suppose that λ has ci
nodes of residue i modulo e, for i = 0, . . . , e− 1. Then λ has e-weight

w = c0 −
1

2

∑
i∈Ze

(ci − ci+1)
2.

An e-block of a positive integer n consists of the set of all partitions
of n that have a fixed e-tuple (c0, . . . , ce−1) of e-residue numbers. Write
P (x)e =

∑∞
w=1 nwx

w. It is known that nw is equal to the number of
partitions in an e-block of weight w.

Example: if e = 2 its easy to see that n0 = 1, n1 = 2, n2 = 5, n3 = 10.

Corollary 5. Let e = 2. Then

∑
λ

xc0(λ)yc1(λ) = P (xy)2
∞∑

k=−∞

xk
2

yk
2+k.

Proof. The coefficient of xc0yc1 on the lhs is the number nw of partitions
(of c0 +c1) in a 2-block of weight w = c0− (c0−c1)2. On the rhs, xc0yc1

occurs only in the monomial xk
2
yk

2+kxwyw with k = c1 − c0 and w as
before. The weight of this monomial is nw also. �

Let ai = ai(λ) be the number of addable nodes of λ that have e-
residue i, and let ri = ri(λ) be the number of removable nodes of λ
that have e-residue i.

Lemma 6. For e = 2 and any partition λ we have

(a0 − r0) = 2(c1 − c0) + 1, (a1 − r1) = −2(c1 − c0).

Proof. Use the 2-abacus representation of λ, noting that the 2-core Tk,
where k = (c1− c0) has 2k more beads on runner 1 than runner 0. �

Corollary 7. For e = 2 we have

∑
λ

a0(λ)xc0(λ)yc1(λ) = P (xy)2(1− x)−1
∞∑

k=−∞

(2k + 1)xk
2

yk
2+k.

∑
λ

a1(λ)xc0(λ)yc1(λ) = P (xy)2(1− y)−1
∞∑

k=−∞

−2kxk
2

yk
2+k.

Question 8. Express the right hand sides of each of the two power
series in the above Corollary as infinite products.
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4. Dropping down a dimension

Dropping down a dimension, we obtain the generating functions for
addable nodes of 2-residue 0 and 1.

Proposition 9.∑
λ

a0(λ)x|λ| =
1

2(1− x)

[
P (x) +

P (x2)2

P (x)3

]
,

∑
λ

a1(λ)x|λ| =
1

2(1− x)

[
P (x)− P (x2)2

P (x)3

]
.

Proof. The generating function
∑

λ a(λ)x|λ| for addable nodes is known
to be 1

(1−x)P (x). So we only need to prove the identity for a0(λ). Setting

y = x in Corollary 7, we have

(1)
∑
λ

a0(λ)x|λ| = P (x2)2(1− x)−1
∞∑

k=−∞

(2k + 1)x2k
2+k.

Let k be an indice that runs through all integers and define

m :=

{
2k, if k ≥ 0.
−2k − 1, if k < 0.

Then m runs through all non-negative integers and

(2) 2k2 + k =
m(m+ 1)

2
.

It can be checked that 4k + 1 = (−1)m(2m+ 1). So

(3) 2k + 1 =
1

2
((−1)m(2m+ 1) + 1) .

Now (2) and (3) imply that

∞∑
k=−∞

(2k + 1)x2k
2+k =

1

2

(
∞∑
m=0

xm(m+1)/2 +
∞∑
m=0

(−1)m(2m+ 1)xm(m+1)/2

)

=
1

2

(
P (x)P (x2)−2 + P (x)−3

)
,

the last equality following from classical identities of Gauss and Jacobi.
The first identity of the Proposition follows from this and (1). �
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5. Connections to the Jacobi Triple Product identity

The famous Jacobi triple product identity asserts that:

(4)
∞∏
i=1

(1 + sti)(1 + s−1ti−1)(1− ti) =
∞∑

k=−∞

sktk(k+1)/2.

We use T (s, t) to denote the left hand infinite product above. Applying
the change of variables s = x−1 and t = x2y2 this becomes:

(5)
∞∏
i=1

(1 + x2i−1y2i)(1 + x2i−1y2i−2)(1− x2iy2i) =
∞∑

k=−∞

xk
2

yk
2+k.

Using Corollary 5 and (5), the generating function for the 2-residues
of 2-blocks can be expressed as:∑

λ

xr0(λ)yr1(λ) = P 2(xy)
∞∑

k=−∞

xk
2

yk
2+k

=
∞∏
i=1

(1 + x2i−1y2i)(1 + x2i−1y2i−2)
(1 + xryr)

(1− xryr)
.

We now fail to compute the partial derivative with respect to s of
both sides of (4), and then multiply through by s. The right hand side
is:

∞∑
k=−∞

ksktk(k+1)/2 =
∞∑

k=−∞

kxk
2

yk
2+k,

on applying the substitution s = x−1, t = x2y2, as before. The impor-
tance of the right hand side of this expression is clear from Corollary
7. Now we compute:

s
∂T

∂s
=

(
∞∑
i=1

sti

1 + sti
−
∞∑
j=0

s−1tj

1 + s−1tj

)
T

Now the expression in brackets on the right hand side equals

∞∑
i=1

∞∑
u=1

(−1)u−1sutiu +
∞∑
j=0

∞∑
v=1

(−1)vs−vtjv.

This evaluates to
∞∑
u=1

(−1)u−1sutu

1− tu
+
∞∑
v=1

(−1)vs−v

1− tv
=

∞∑
u=−∞,u6=0

(−1)us−u

1− tu
.
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Substituting s = x−1, t = x2y2, this becomes

∞∑
u=1

(−1)u−1xuy2u

1− x2uy2u
+
∞∑
v=1

(−1)vxv

1− x2vy2v
.

6. Odd Partitions

Let O be the partitions with all parts odd. The generating function
for odd partitions can be given in various ways:

O(x) =
∑
λ∈O

x|λ| =
∞∏
n=1

(1− x2n−1)−1

= D(x) =
∞∏
n=1

(1 + xn)

=
∞∑
k=0

xk
k∏
i=1

(1− x2i)−1.

The generating function for partitions of n with all parts odd and
distinct is

OD(x) =
∞∏
n=1

(1 + x2n−1) =
P (x)P (x4)

P (x2)2
.

Now Olsson has noted that a p-block of weight w has coefficient of
xw in P (x)p−1 irreducible modules. Also by Brauer, the number of
irreducible Sn-modules is equal to the number of p-regular classes of
Sn. Thus

O(x) = P (x2)
∞∑

k=−∞

x2k
2+k.

Now all odd partitions λ of n belong to the principal 2-block of n, as
c0(λ) = b(n+ 1)/2c and c1(λ) = b(n− 1)/2c. It follows from this that

O0(x) :=
∑

λ∈O,|λ|∈2Z

xc0(λ)yc1(λ) = P (xy)
∞∑

k=−∞

x4k
2+ky4k

2+k

O1(x) :=
∑

λ∈O,|λ|6∈2Z

xc0(λ)yc1(λ) = P (xy)
∞∑

k=−∞

x4k
2−3k+1y4k

2−3k
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Now Hardy & Wright give the following special cases of Jacobi’s
identity:

∞∏
n=1

(1 + x8n−5)(1 + x8n−3)(1− x8n) =
∞∑

k=−∞

x4k
2+k

∞∏
n=1

(1 + x8n−7)(1 + x8n−1)(1− x8n) =
∞∑

k=−∞

x4k
2−3k

These and the previous paragraph give

O0(x) =
∞∏
n=1

(1 + x8n−5)(1 + x8n−3)(1− x8n)

(1− xn)

O1(x) = x
∞∏
n=1

(1 + x8n−7)(1 + x8n−1)(1− x8n)

(1− xn)

We can interpret these functions as follows. Recall that a regular
McMahon diagram is a pair (λ,R), where λ is a partition, and R is
a subset of the part-lengths of λ - called marked parts. Then there is
a bijection between the odd partitions of an even integer 2n and the
regular McMahon partitions of n which have no parts divisible by 8,
where only parts congruent to 3 or 5 modulo 8 can be marked. Likewise,
there is a bijection between the odd partitions of an odd integer 2n+ 1
and the regular McMahon partitions of n which have no parts divisible
by 8, where only parts congruent to 1 or 7 modulo 8 can be marked.

7. Derivative of P (x)

We end this note by computing the derivative of P (x). This may or
may not be relevant.

For n > 0 set σ(n) as the sum of all positive divisors of n.

Lemma 10. P ′(x) = P (x)
∑∞

n=0 σ(n+ 1)xn.

Proof. From Euler’s formula for P (x) we get

P ′(x) =
∞∑
i=1

(P (x)(1− xi))ixi−1(1− xi)−2 = P (x)
∞∑
i=1

i
∞∑
j=1

xij−1.

For a given n, the integer i contributes i to the coefficient of xn if ij−1 =
n, and 0 otherwise. So the coefficient of xn in P ′(n) is σ(n+ 1). �
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Note that P ′(x)/P (x) is the derivative of logP (x). Given a power
series C(x) =

∑∞
n=0 cnx

n, MacDonald has a formula for logC(x).

Department of Mathematics, National University of Ireland, Maynooth,
Co. Kildare, Ireland

E-mail address: John.Murray@maths.nuim.ie

9


