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Abstract

We give the lower bounds 2ℓ and 2ℓ−2+2ℓ−4+. . . for the number of
irreducible characters of height zero and positive height, respectively,
in a p-block of a p-solvable groups, where ℓ is the p-length of an asso-
ciated p-solvable group. We also prove some results on extensions of
linear characters in p-subgroups of p-solvable groups.

1 Introduction

Suppose that G is a finite p-solvable group, where p is a prime integer. Ac-
cording to [2] if B is a p-block of G then there is an irreducible character θ
of Op′(G) such that all irreducible characters in B lie over θ. Both θ and its
inertia group Gθ in G are determined by B up to G-conjugacy. For example,
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the irreducible characters in the principal p-block of G are the inflations of
the irreducible characters of G/Op′(G). So they lie over the trivial character
of Op′(G).

Recently, the second author proved that if G has p-length ℓ, then G has at
least 2ℓ irreducible characters of degree coprime to p which take values in the
cyclotomic field Qp, obtained by adjoining a primitive p-th root of unity to
Q (see [16] for the case p = 2 and [17] for the general bound). The characters
constructed in the proof of this result are of a special nature: they are p′-
degree irreducible constituents of the principal projective indecomposable
character Φ1G of G (see Theorem 2.2 of [1]). In particular they belong to the
principal p-block of G. Such characters play an important role in the work
of I. M. Isaacs and G. Navarro [12].

In this note, we generalize the results of [16] and [17] to all p-blocks which
are weakly regular with respect to Op′(G). Recall that a p-block is real if
it contains the complex conjugates of its irreducible characters. It is known
that every real 2-block has a real irreducible character of height zero. We
will show:

Theorem 1. Let B be a real 2-block of a finite solvable group G that is weakly
regular with respect to O2′(G). Suppose that all irreducible characters in B
lie over θ ∈ Irr(O2′(G)) and that Gθ has 2-length ℓ. Then B has at least 2ℓ

real-valued 2-rational irreducible characters of height zero.

If χ is a real-valued irreducible character of odd degree of a solvable group,
then χ is rational-valued by a result of R. Gow [6]. So Theorem 1 implies
the main result of [16].

When p is an odd prime, we obtain the same lower bound 2ℓ for the
number of height-zero characters in any p-block of G which is weakly regular
with respect to Op′(G), although we have less control on the field of values
of such characters: they take values inside the cyclotomic field Qn, where
n = p|G|p′ (see Theorem 5 below). We also give lower bounds for the number
of positive height characters in such blocks (see Theorems 4 and 6 below).
The latter is an easy consequence of Theorem 5 and the main result of [4].

In [7] R. Gow used an ingenious argument to show that the p′-degree
irreducible characters of Φ1G correspond to families of linear characters of a
Sylow p-subgroup of G. In the last section we show that Gow’s approach is
compatible with the normal structure of G. Making use of these arguments
we are able to give a proof of the main result in [17] which does not use
Isaacs’ π-theory (see Theorem 13 below).
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We are also able to give straighforward proofs for some results on exten-
sions of linear characters in p-subgroups of G. Some of these results already
appear in [12]. We thank G. Navarro for pointing out how to prove the next
result using a theorem of S. Gagola. Our original statement required G to
be p-solvable.

Theorem 2. Suppose that S is a normal subgroup of a finite group G such
that S has no proper quotient that is a p-group. Let P be a Sylow p-subgroup
of G and let µ be a linear character of P ∩S. Then µ has an extension to P
if and only if µ is P -invariant.

Proof. Theorem A of [3], which does not require S = Op(S), gives

P ′ ∩ S

[P ∩ S, P ]
∼=

(PS)′ ∩ S

[PS, S]
.

The left hand side is a p-group while the right hand side is a subquotient of
S/S ′. As S = Op(S), we deduce that P ′ ∩ S = [P ∩ S, P ].

Now the ‘only if’ part of the conclusion is obvious. So suppose that µ is
a P -invariant linear character of P ∩ S. Equivalently µ is a linear character
of (P ∩ S)/[P ∩ S, P ]. Now by the previous paragraph

P ∩ S

[P ∩ S, P ]
∼=
P ′(P ∩ S)

P ′
.

So we can inflate µ to a character of P ′(P ∩ S)/P ′. But P ′(P ∩ S)/P ′ is a
subgroup of the abelian group P/P ′. So µ extends to a linear character of
P . The ‘if’ part of the Theorem follows.

We prove a π-generalization of this theorem for an arbitrary set of primes
π, and π-solvable groups in Theorem 10 below. This makes it natural to ask
whether Gagola’s result may hold for an arbitrary set π of primes and groups
containing a Hall π-subgroup, or at least that Theorem 10 is true for any
arbitrary group containing a Hall π-subgroup.

2 Characters heights

In this section we prove Theorem 1 and some related results, including a
version for odd primes. We start by recalling some well known facts and fixing
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some notation which we shall use throughout the section. As usual Irr(G)
is the set of complex irreducible characters of G, and if θ is an irreducible
character of a subgroup of G then Irr(G | θ) is the set of irreducible characters
of G whose restrictions contains θ. Now Irr(G) is partitioned by the p-blocks
of G c.f. [15, 3.6.4]. We use Irr(B) to denote the irreducible characters
contained in a p-block B. Recall that a defect group of B is a p-subgroup of
G, uniquely determined up to G-conjugacy.

Unless otherwise stated G is a finite p-solvable group, B is a p-block of G
and N is the largest normal p′-subgroup Op′(G) of G. As already mentioned,
there is θ ∈ Irr(N) such that all irreducible characters of B lie over θ. By
the Fong-Reynolds Theorem [15, 5.5.10] there exists a unique p-block β of
the inertia group Gθ such that the irreducible characters of β are precisely
the Clifford correspondents of the irreducible characters of B with respect to
θ. In particular induction of characters defines a height-preserving bijection
between Irr(B) and Irr(β).

Now Irr(β) ⊆ Irr(Gθ | θ1) for some irreducible character θ1 of Op′(Gθ).
Moreover each defect group of β is a defect group of B. Suppose that a
defect group of β is a Sylow p-subgroup of Gθ. Then B is said to be weakly
regular with respect to N . In that case θ1 is fixed by some Sylow p-subgroup
of Gθ and Irr(β) = Irr(Gθ | θ1), by Theorem (1E) of [2].

Fields of values of characters can be controlled by the action of suitable
Galois groups on characters. For this reason, it is convenient for us to con-
sider a p-group Q acting on the irreducible characters of each characteristic
subgroup of Gθ in such a way that Q preserves the determinantal orders
of characters (as Galois action does). Assume also that θ is Q-invariant.
Furthermore, suppose that Q contains a normal subgroup D which is a Sy-
low p-subgroup of Gθ, such that the action of D on characters is given by
conjugation in Gθ.

We consider the following normal series for G

G = L0 DM1 D L1 D . . .DMℓ D Lℓ DN, (1)

where Mi/N = Op′(Li−1/N) and Li/N = Op(Mi/N) for i ≥ 1. Note that
since N has p′-order Op(Mi/N) = Op(Mi)/N and Li = Op(Mi). In particular
Op(Li) = Li, for i ≥ 1. By definition, the p-length of G/N is the smallest
integer ℓ such that Ml+1 ≤ N . Now Lℓ/Mℓ+1 and Mℓ+1 have p′-order and
N ≤ Lℓ E G. So Lℓ = N . Again because N has p′-order, the p-length of
G/N coincides with the p-length of G.
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Proposition 3. Let B be a p-block of G that is weakly regular with respect to
N . Suppose that all irreducible characters in B lie over θ ∈ Irr(N) and that
Gθ has p-length ℓ. Then B has at least 2ℓ height-zero Q-invariant irreducible
characters, where Q is as above.

Proof. By the discussion above we can assume that B has a defect group D
which is a Sylow p-subgroup of G, that Irr(B) = Irr(G | θ) and that θ is
D-invariant.

Let i ∈ {0, . . . , ℓ}. We use backwards induction on i to prove that G
has at least 2ℓ−i-orbits on Irr(Li | θ) containing a Q-invariant character of
p′-degree. The base case i = ℓ is trivial as Lℓ = N has p′-order and θ is
Q-invariant. So suppose that 1 ≤ i ≤ ℓ.

Suppose that χ ∈ Irr(Li | θ) has p′-degree and is Q-invariant. Then χ
is invariant in Mi because Mi/Li ≤ DLi/Li. Moreover o(χ) is coprime to p
as Li = Op(Li). As gcd(χ(1)o(χ), [Mi : Li]) = 1, Gallagher’s Theorem (6.28
in [10]) implies that there exists a unique extension ψ of χ to Mi such that
o(ψ) = o(χ). Our assumptions on Q imply that ψ is Q-invariant.

Let ψ have inertia group Ii in Li−1. Then

∑

α∈Irr(Li−1)

〈α, ψLi−1〉2 =
ψLi−1(1)

[Li−1 : Ii]ψ(1)
= [Ii :Mi]. (2)

As p ∤ [Ii :Mi] we may choose a Q-invariant χ1 ∈ Irr(Li−1 | ψ).
Observe that the p-group Q acts on the linear characters of the p-group

Mi/Li. These characters form a non-trivial p-group, with a Q-invariant
identity element (the trivial character). So we can choose a non-trivial Q-
invariant linear character δi ∈ Irr(Mi/Li). Now δiψ is also Q-invariant. So
the arguments above show that there exists aQ-invariant χ2 ∈ Irr(Li−1 | δiψ),

We claim that χ1 and χ2 are not conjugate in G. For the irreducible
constituents of (χ1)Mi

have p′-determinantal order o(ψ) = o(χ). On the

other hand, det (δiψ) = δ
ψ(1)
i detψ. So the irreducible constituents of (χ2)Mi

have determinantal order o(δi)o(χ), which is divisible by p. The claim now
follows.

Now by induction we may assume that G has at least 2ℓ−i-orbits on
Irr(Li | θ) containing a Q-invariant character of p′-degree. The work above
implies that G has at least 2ℓ−(i−1)-orbits on Irr(Li−1 | θ) containing a Q-
invariant character of p′-degree. This completes the inductive step and the
result follows.
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We use Proposition 3 to prove Theorem 1. Set G := Gal(Q|G|/Q) where
Q|G| is the field obtained by adjoining a primitive |G|-th root of unity to
Q. The characters of subgroups of G take values inside Q|G|. Now G acts
naturally on Irr(K) for each K ≤ G via

θτ (x) = θ(x)τ

for all τ ∈ G, θ ∈ Irr(K) and x ∈ K. Write |G| = pa11 · · · patt , where p1, . . . , pt
are the distinct prime divisors of |G|. Then

G ∼= Gal(Qp
a1
1

/Q)× · · · ×Gal(Qp
at
t
/Q).

Recall that Gal(Q2a/Q) is isomorphic to C2×C2a−2 and Gal(Qpa/Q) is cyclic
of order (p− 1)pa−1 if p is an odd prime.

Suppose that p = 2 and the 2-block B in the statement of Proposition 3
is real. Then by Theorem 5.1 of [5] B contains a real irreducible character
ϕ. With the notation of Theorem 1, it follows from Clifford Theory that
θ = θt for some t ∈ G (because ϕ lies over both θ and θ). It is easy to see
that t normalizes Gθ and t2 ∈ Gθ. Replacing t by a generator of the Sylow
2-subgroup of 〈t〉, we may assume that t has order a power of 2. For each
characteristic subgroup K of Gθ define a map σ on Irr(K) by

ησ = ηt, for η ∈ Irr(K).

Then σ fixes θ and σ2 is induced by the conjugation action of t2 ∈ Gθ.
Let E be a Sylow 2-subgroup of the group Gθ〈t〉 that contains t and set

D := E ∩ Gθ. Then D〈σ〉 is a group acting on each Irr(K) and we can
consider the external direct product

Q := D〈σ〉 ×Gal(Q|G|/Q|G|
2′
).

Then Q is a 2-group, as Gal(Q|G|/Q|G|
2′
) ∼= Gal(Q|G|2/Q) is a 2-group. Since

G is abelian and Galois action commutes with the conjugation action of G
on the characters of its normal subgroups, it is clear that Q acts on the set
of characters of each characteristic subgroup of Gθ.

Proof of Theorem 1. By Proposition 3 the block β of Gθ contains 2ℓ irre-
ducible characters of height zero which are Q-invariant. Now let ψ ∈ Irr(β)
be Q-invariant. As ψσ = ψ we have

ψG = (ψt)G = ψG.
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Also, for each τ ∈ Gal(Q|G|/Q|G|
2′
) we have

(ψG)τ = (ψτ )G = ψG.

It follows that each Q-invariant irreducible character of β induces a real 2-
rational character ofG, since the 2-rational characters ofG are precisely those
fixed by Gal(Q|G|/Q|G|

2′
). Thus, the 2-block B of G contains 2ℓ real-valued

2-rational irreducible characters of height zero.

For real irreducible characters of positive height in the principal 2-block
we have the following weaker estimate, which we obtain using a different type
of argument.

Theorem 4. Let G be a finite solvable group that has 2-length ℓ ≥ 1. Then
the principal 2-block of G contains at least ℓ − 1 real 2-rational irreducible
characters of even degree.

Proof. We may assume that ℓ > 1. Consider the normal series for G:

G = U0 D V1 D U1 D . . .D Vℓ D Uℓ D Vℓ+1 = 1,

where Ui = O2′(G/Vi+1) and Vi/Ui = O2(G/Ui) for 0 ≤ i ≤ ℓ. In particular
Uℓ = O2′(G). We use induction on the 2-length ℓ.

As noted in the introduction Irr(G/Uℓ) is the set of irreducible characters
in the principal 2-block of G. As G/Uℓ−1 has 2-length ℓ−1, we may assume by
induction that the principal 2-block of G/Uℓ−1 has at least ℓ−2 real 2-rational
irreducible characters of even degree. The inflations of these characters to G
belong to the principal 2-block.

The group G/Vℓ has a non-trivial normal odd order subgroup Uℓ−1/Vℓ and
hence by Lemma (3A) of [2], G/Vℓ has a 2-block B of non-maximal defect.
Corollary 5.9 of [8] implies that B can be chosen to be real.

Now B has a real 2-rational irreducible character χ, according to Theorem
5.1 of [5]. Moreover χ is not a character of G/Uℓ−1 and χ(1) is even. However
the inflation of χ to G belongs to the principal 2-block. This brings to ℓ− 1
our lower bound for the number of real 2-rational irreducible characters of
even degree in the principal 2-block.

Suppose now that the prime p in the statement of Proposition 3 is odd.
Take P to be the unique Sylow p-subgroup of Gal(Q|G|/Q|G|p′

) and set Q =
D × P , where D is a Sylow p-subgroup of Gθ. Then we can repeat the
arguments used to prove Theorem 1 to get:
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Theorem 5. Let B be a p-block of a finite p-solvable group G that is weakly
regular with respect to N . Suppose that all irreducible characters in B lie over
θ ∈ Irr(N) and that Gθ has p-length ℓ. Then B has at least 2ℓ height-zero
irreducible characters with values in Qn where n = p|G|p′.

If we drop the ‘real’ requirement in the statement of Theorem 4, we get
a much stronger estimate which holds for all primes p.

Theorem 6. Let B be a p-block of a finite p-solvable group G that is weakly
regular with respect to N . Suppose that all irreducible characters in B lie
over θ ∈ Irr(N) and that Gθ has p-length ℓ ≥ 2. Then B has at least
2ℓ−2 + 2ℓ−4 + . . . irreducible characters of positive height.

Proof. As above we can assume that Irr(B) = Irr(G | θ) and that θ is D-
invariant, where D is a Sylow p-subgroup of G. Set βi := (4i−1)/3 for i ≥ 0.
Then our lower bound is

2ℓ + ((−1)ℓ − 3)/2

3
=

{

βℓ/2, if ℓ is even,
2β(ℓ−1)/2, if ℓ is odd.

Suppose first that ℓ is even. Consider the normal series for G given by (1).
It is convenient to set Ji := Lℓ−2i, for 0 ≤ i ≤ ℓ/2. So Ji is p-solvable of even
p-length 2i. We prove by induction on i that Irr(Ji | θ) has βi+1 irreducible
characters in distinct G-orbits, of which βi+1−j have height at least j, for
j = 0, 1, . . . , i. The base case is i = 0 and J0 = Lℓ = N . Then the conclusion
is trivial as β1 = 1.

Now let i ≥ 1. Then by our inductive hypothesis Irr(Ji−1 | θ) has βi
irreducible characters in distinct G-orbits, of which βi−j have height at least
j, for j = 0, 1, . . . , i − 1. The group Ji/Ji−1 is p-solvable of p-length 2. In
particular it has nonabelian Sylow p-subgroups, by Theorem A of [9]. Let
ϕ ∈ Irr(Ji−1). Then there exists χ ∈ Irr(Ji | ϕ) such that p | (χ(1)/ϕ(1)),
by Theorem A of [4]. We deduce from this that Irr(Ji | θ) has βi irreducible
characters in distinct G-orbits, of which βi+1−j have height at least j, for
j = 1, . . . , i. Examining the proof of Proposition 3 (applied with Q = 1) we
see that Irr(Ji | θ) also has 22i height-zero irreducible characters in distinct
G-orbits. This gives a total of βi+1 = βi+4i irreducible characters in distinct
G-orbits, and the inductive step follows.

The case that ℓ is odd is similar. We omit the proof.
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We note that it was already noted in Theorem D of [4] that the block B
in Theorem 6 has an irreducible character of height at least (ℓ− 1)/2.

Let Irr0(B) denote the set of height-zero irreducible characters in B. Then
we have the following estimate:

Theorem 7. Let B be a p-block of a finite p-solvable group G that is weakly
regular with respect to N . Suppose that all irreducible characters in B lie
over θ ∈ Irr(N) and that Gθ has p-length ℓ. If q is the smallest prime divisor
of |Gθ| not equal to p then

∑

χ∈Irr0(B)

χ(1)2 ≥ θ(1)2[G : Gθ]
2(q2 + 1)ℓ

Proof. We use the notation in the proof of Proposition 3. We may assume
as before that B has a defect group D ∈ Sylp(G), that θ is D-invariant and
that Irr(B) = Irr(G | θ). Recall that given i = 1, . . . , ℓ each Q-invariant
χ ∈ Irr(Li | θ) has a Q-invariant extension ψ to Mi. Also δi is a Q-invariant
linear character of Mi/Li. Then we produced Q-invariant χ1 ∈ Irr(Li−1 | ψ)
and χ2 ∈ Irr(Li−1 | δiψ) which are not conjugate in G.

We claim that δiψ is not invariant in Li−1. For suppose otherwise. Then
(χ2)Mi

= eδiψ for some positive integer e | [Li−1 :Mi] and hence

det((χ2)Mi
) = δ

eψ(1)
i det(ψ)e.

As eψ(1) is coprime to p and o(δi) is a power of p, it follows that p | o((χ2)Mi
)

and hence that p | o(χ2). This contradicts the fact that Li−1 = Op(Li−1).
This proves our claim.

The previous paragraph implies that χ2(1) ≥ qχ(1) and hence χ1(1)
2 +

χ2(1)
2 ≥ (q2 +1)χ(1)2. Noting that this process is repeated ℓ times between

N and G, we see that

∑

χ∈Irr0(B)

χ(1)2 ≥ θ(1)2(q2 + 1)ℓ.

The factor [G : Gθ]
2 in the statement arises from the fact that induction from

Gθ to G multiplies each character degree by [G : Gθ].

Examination of the previous proof shows that B contains a Q-invariant
irreducible character χ of height zero such that the total number of p′-prime
factors in χ(1) is at least ℓ, counting multiplicities.
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With a bit of work, we can get relative versions of the above results. By
this we mean that we can replace G and N in the hypotheses of Proposition
3 or Theorems 1 or 5 by any finite group G and any normal subgroup N of
G such that G/N is p-solvable. In the conclusion ℓ is the p-length of Gθ/N .
We merely sketch a proof.

Let M E L be groups and let (F,R, k) be a splitting p-modular system
for L and its subgroups and let bL be a p-block of L that covers a p-block bM
of M . Suppose that bL is weakly regular with respect to M . Recall that bM
has a central character ω : Z(kM) → k and bL has a primitive idempotent
e ∈ Z(kL) which has a unique lift to an idempotent ê ∈ Z(RL). The Brauer
map BrLM : kL→ kM is the linear map induced by

BrLM(x) =

{

x, if x ∈ L,
0, if x ∈ L\M .

It is a result of M. Murai [13] that

ω(BrLM(e)) 6= 0k.

Moreover, let θ ∈ Irr(bM ) and set (θL)bL :=
∑

χ∈Irr(bL)
〈θL, χ〉χ. Then it is

straightforward to show that (in R)

(θL)bL(1)

θ(1)
= [L :M ]ωθ(Br

L
M(ê)). (3)

Now let N ≤ M ≤ L ≤ G be a normal chain of groups such that p ∤

[L : M ] and let Q be a p-group that acts on the irreducible characters of
each normal subgroup of G. Suppose that B covers the p-block bM of M
and that θ ∈ Irr(bM) is Q-invariant. Then we can use (3) to show that there
exists a p-block bL of L that is covered by B and ψ ∈ Irr(bL | θ) such that
ψ is Q-invariant. Use this in place of (2) in order to prove the analogue of
Proposition 3 in this situation.

3 Linear characters of Hall π-subgroups

We continue to assume that G is a finite p-solvable group. The main result
in [17] states that if G has p-length ℓ, then G has at least 2ℓ irreducible
characters of p′-degree having values inside Qp. The proof of this theorem is
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constructive and the characters so obtained actually belong to Isaacs’ canon-
ical set Bp(G) ⊆ Irr(G) (we refer the reader to [11] for the definition and
basic properties of the Bπ-characters of a π-separable group, where π is any
set of primes).

In their deep work [12] M. Isaacs and G. Navarro construct a bijection
between the Bp(G)-characters of p′-degree and the NG(P )-orbits of linear
characters of P ∈ Sylp(G). This enables them to prove a strong form for the
Alperin-McKay conjecture for p-solvable groups. By the results in Section
4 of [12], this association of characters is well behaved with respect to the
normal structure of G, which implies some results on extension of linear
characters in P .

We observe that by Theorem 2.2 of [1], the Bp-characters of p′-degree
of G are precisely the irreducible constituents of the principal projective
indecomposable character Φ1 of p′-degree. In particular, the characters we
obtained above in Theorems 1 and 5 will not belong to Bp(G) if our block B
is not the principal p-block of G.

Note that as G is p-solvable, Φ1 coincides with the permutation character
of G acting on the cosets of a Hall p′-subgroup of G (see for instance Problem
(2.8) of [14]). In [7], R. Gow studied the p′-degree characters in Φ1 using
elementary methods, and our next goal is to show that Gow’s treatment is
compatible with the normal structure of G and give some consequences of
this fact.

All the above can be stated and proved with exactly the same amount of
work for π-separable groups G, considering now an arbitary set of primes π
instead of a single prime p. We chose this more general framework, and we
start by recalling Gow’s approach in [7].

Let λ be a linear character of a Hall π-subgroup H of G. If M is a
π-complement of G, then (λG)M is the regular character of M . Thus

there is a unique χ ∈ Irr(G) with 〈χ, λG〉 6=0 and 〈χ, (1M)G〉 6=0.

Clearly 〈χ, λG〉 = 〈χ, (1M)G〉 = 1. By [7], χ is monomial with Schur index 1
over Q and χ(1) is a π′-number. More significantly, if σ is any linear character
of H with 〈χ, σG〉 6= 0, then σ = λn, for some n ∈ NG(H).

We call χ the Gow character of G corresponding to λ, and denote it by
ΨG(λ). Let IrrΨ(G) be the set of Gow characters of G, and for L ≤ G and
θ ∈ Irr(L), let IrrΨ(G | θ) be the set of Gow characters of G lying over θ.

We sketch Gow’s proof for the reader’s convenience. Work by induction
on |G|. Then we may assume that χ is faithful. In particular Oπ′(G) = 1.
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Set U := Oπ(G) and µ := λU . If U = G then χ = µ and the result holds.
Otherwise Lemma 1.2.3 of [9] can be used to show that Gµ is a proper
subgroup of G. Clearly H ≤ Gµ. Moreover ϕ := ΨGµ

(λ) is the Clifford
correspondent of χ with respect to µ. Then χ inherits the properties stated
from ϕ, using the inductive hypothesis.

Clearly there is a pair (W, τ) with H ≤ W ≤ Gµ and τ ∈ Lin(W )
such that τH = λ and τGµ = ϕ, whence τG = χ. Examination of Gow’s
proof shows that o(τ) is a π-number. The pair (W, τ) is determined up to
G-conjugacy in the following strong sense:

Lemma 8. Suppose that W1 ≤ G and τ1 ∈ Lin(W1) is such that τG1 = χ.
Then there exists g ∈ G such that W g

1 = W and τ g1 = τ .

Proof. We prove this by induction on |G|. Then with the notation used
above, it is clear that we may assume that Gµ < G. Note that 〈χH , (τ1)H〉 6=
0. So by Gow’s result (τ1)H is conjugate in NG(H) to λ. ConjugatingW1 and
τ1 by an element of G, if necessary, we may assume that (τ1)H = λ. Then
W1 fixes λH∩U and hence also µ. As W1 ≤ Gµ, and |Gµ| < |G| the claim
follows from our inductive hypothesis.

As we have already claimed, Gow characters interact well with the normal
subgroups of G. Our next result states this precisely.

Lemma 9. Let SEG, let λ ∈ Lin(H) and let γ ∈ Lin(H∩S). Set χ = ΨG(λ)
and θ = ΨS(τ). Then

(i) Let {λi}
r
i=1 be the set of NG(H ∩ S)-conjugates of λH∩S. Then

χS = e

r
∑

i=1

ΨS(λi) for some integer e > 0.

(ii) Suppose that G/S is a π′-group. Then e = 1. Moreover ΨG(γ) is the
unique Gow character in Irr(G | θ).

(iii) Suppose that G/S is a π-group. Then χS ∈ Irr(S). Moreover the Gow
characters in Irr(G | θ) are the extensions of θ to G.

Proof. First note that H ∩ S is a Hall π-subgroup of S and M ∩ S is a
Hall π′-subgroup of S. As 〈χM , 1M〉 = 1 and (1M)M∩S = 1M∩S, there is
an irreducible constituent ψ of χS such that 〈ψM∩S, 1M∩S〉 6= 0. But then
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〈(ψg)M∩S, 1M∩S〉 6= 0, for all g ∈ G, as M ∩ S and (M ∩ S)g are Hall π′-
subgroups of S. Replacing ψ by a G-conjugate, if necessary, we may assume
that 〈ψH∩S, λH∩S〉 6= 0. So ψ = ΨS(λH∩S).

Now G = SNG(H ∩ S), by the Frattini argument. So each G-conjugate
of ψ has the form ψn, for some n ∈ NG(H ∩ S). Then ψn = ΨS(λ

n
H∩S). This

proves (i).
Assume the hypothesis of (ii). Then G =MS and H is a Hall π-subgroup

of S. So

〈(ψG)M , 1M〉 = 〈(ψM∩S)
M , 1M〉 = 〈ψM∩S, 1M∩S〉 = 1.

This proves the conclusions in (ii).
Assume the hypothesis of (iii). Then G = SH and M is a Hall π′-

subgroup of G. As 1 = 〈χM , 1M〉 = 〈(χS)M , 1M〉, we see that

∑

ν∈IrrΨ(S)

〈χS, ν〉 = 1.

It follows from this and (i) that χS = ψ. Now suppose that IrrΨ(G | θ)
is non-empty. Then the previous paragraph implies that θ extends to G.
Conversely let ϕ be an extension of θ to G. By Gow’s theorem there exists
a subgroup X of S containing H ∩ S and δ ∈ Lin(X) such that θ = δS. Let
W be the inertia group of δ in NG(X). Now 〈ϕX , δ〉 = 〈θX , δ〉 = 1. So there
exists a unique τ ∈ Irr(W ) such that 〈ϕW , τ〉 = 1 = 〈τX , δ〉. As X E W
and δ is invariant in W , we see that τX = δ. In particular τ ∈ Lin(W ).
As τS∩W is an extension of δ to S ∩W and δS is irreducible we must have
S ∩W = X . Now θ is G-invariant. So G = SW , using Lemma 8 and the
Frattini argument. We have (τG)S = (τS∩W )S = δS = θ. It follows that
ϕ = τG. But 〈ϕM , 1M〉 = 〈θM , 1M〉 = 1. We conclude that ϕ = ΨG(τH).

The following observation, which is independent of the previous lemma,
can be proved using part (iii) of Lemma 9. Of course, this implies Theorem 2
in the Introduction. In particular this gives a character-theoretic proof which
is different to the methods in [3].

Theorem 10. Let G be a finite π-separable group and suppose that S E G
satisfies S = Oπ(S). Let H be a Hall π-subgroup of G and let µ be a linear
character of H ∩ S. Then µ has an extension to H if and only if µ is H-
invariant.
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Proof. Assume that µ is H-invariant. Since H ∩ S is a Hall π-subgroup of
S, we may consider θ := ΨS(µ), an irreducible character of S. We claim
that θ is H-invariant. In fact, for any h ∈ H , θh is the Gow character of S
associated with µh = µ, so θh = θ by uniqueness of Gow characters.

Now as S has no proper normal subgroups of index a π-number o(θ) is a
π′-number. Then gcd(θ(1)o(θ), [HS :S]) = 1. So by Gallagher’s Theorem θ
extends to χ ∈ Irr(HS). Since 〈θH∩S, µ〉 = 1, Lemma 4.1 of [11] implies that
there is a unique λ ∈ Irr(H | µ) such that λ is a constituent of χH . Also, by
the same result

χ(1)

λ(1)
=
θ(1)

µ(1)

and it follows that λ extends µ, as wanted.

Our next result should be compared with Theorem 4.4 of [12].

Proposition 11. Suppose that S E G, where G is π-separable. Let µ be a
linear character of a Hall π-subgroup K of S and let θ be the Gow character
of K associated with µ. Then µ has an extension to some Hall π-subgroup
of G containing K if and only if there exists a Gow character χ of G such
that θ is a constituent of χS. Also, χ and the extension of µ can be chosen
so that χ is the Gow character associated to the extension of µ.

Proof. Suppose that there exists a Gow character χ of G such that θ is a
constituent of χS. Let λ be a linear character of a Hall π-subgroup H of G
such that χ = ΨS(λ). By Lemma 9(i), we know that

χS = e
r

∑

i=1

ΨS(λi)

where λ1, . . . , λr are the NG(H ∩S)-conjugates of λH∩S. Choose notation so
that θ = Ψ(λ1). First we claim that it is no loss to assume that λH∩S = λ1.
Write λ1 = (λH∩S)

y, where y ∈ NG(H ∩ S). The Hall π-subgroup Hy of G
has a linear character λy. By the induction formula, (λy)G = λG and thus χ
is the Gow character associated to λy, by uniqueness of the Gow character.
Note that Hy∩S = H ∩S and (λy)H∩S = (λH∩S)

y = λ1, so after conjugating
H and λ by an element of NG(H ∩ S) if necessary, we can assume that λ
restricts to λ1.

Now let s ∈ S be such that Hs ∩ S = K and let λs1 ∈ Lin(K). Then
θ = Ψ(λs1), and thus there exists n ∈ NS(K) such that µ = λsn1 , by Gow’s
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theorem. Now Hsn ∩S = K and λsn ∈ Irr(Hsn) restricts to µ. Also, χ is the
Gow character associated with λsn, as wanted.

The reverse implication follows from Lemma 9(i).

Observe that it follows from Lemma 9(i) that if χ is a Gow character
of π-separable group G and S ⊳ ⊳G, then all irreducible constituents of χS
are Gow characters of S. The following is now easy to prove by standard
arguments, and we omit the proof.

Corollary 12. Proposition 11 holds under the weaker hypothesis that S⊳⊳G.

Finally, we combine our results on Gow characters with the type of argu-
ments in the previous section to prove a result that easily implies the main
theorem in [17].

Theorem 13. Let G be a finite p-solvable group and let S be a normal
subgroup of G such that S = Op(S). Suppose that P is a Sylow p-subgroup
of G and θ is an irreducible Gow character of S which is P -invariant. If
G/S has p-length ℓ then G has at least 2ℓ irreducible Gow characters which
lie over θ.

Proof. Consider the normal series for G modulo S

G = L0 DM1 D L1 D . . .DMℓ D Lℓ D S

with Mi/S = Op′(Li−1/S) and Li/S = Op(Mi/S) for i ≥ 1. Now ℓ + 1 is
the smallest index such that Mℓ+1 ≤ S. In particular Lℓ/S is a p′-group.
We claim that Op(Li) = Li, for i ≥ 1. To see this, notice that S/S ∩Op(Li)
is isomorphic to a subgroup of the p-group Mi/O

p(Li). As Op(S) = S, it
follows that S ≤ Op(Li). But then Mi/O

p(Li) is a p-quotient of Mi/S. So
Li ≤ Op(Li), which proves our claim.

Set θ := ΨS(µ). Then θ is P -invariant. We claim that there are at least
2ℓ−i irreducible Gow characters of Li lying over θ for i = 0, . . . ℓ. The proof
is by backwards induction on i. For i = ℓ, take θℓ := ΨLℓ

(µ). Then θℓ is
the unique Gow character in Irr(Lℓ | θ), by Lemma 9(ii). In particular θℓ is
P -invariant.

Let i ≤ ℓ and suppose that θi ∈ IrrΨ(Li | θ) is P -invariant. Then o(θi) is
a p′-number as Li=O

p(Li). As gcd(θi(1)o(θi), [Mi :Li]) = 1, it follows from
Gallagher’s extension theorem that θi has a unique extension ϕi to Mi with
o(ϕi) = o(θi). This uniqueness implies that ϕi is P -invariant.
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Now Mi/Li is a p-group. So Lemma 9(iii) implies that ϕi = ΨMi
(µi)

for some linear character µi of Pi = P ∩Mi. Let τi be a P -invariant linear
character of the p-group Mi/Li. Then ϕiτi = ΨMi

(µi(τi)Pi
). Notice that

o(ϕi) is a p′-number while o(ϕiτi) is divisible by p. It follows that ϕi and
ϕiτi are not G-conjugate. Since ΨMi

(µni ) = ΨMi
(µi)

n for all n ∈ NG(Pi), and
the same holds for µi(τi)Pi

, we have that µi and µi(τi)Pi
are not conjugate in

NG(Pi).
Set χ1 := ΨLi−1

(µi) and χ2 := ΨLi−1
(µiτi). Lemma 9(ii) implies that χ1

and χ2 are the unique Gow characters in Irr(Li−1 | ϕi) and Irr(Li−1 | ϕiτi),
respectively. In particular both χ1 and χ2 are P -invariant. As µi and µi(τi)P
are not conjugate in NG(P ∩ Li−1), Lemma 9(i) implies that χ1 and χ2 are
not conjugate in G.

It follows from the previous three paragraphs that if Li has 2
ℓ−i irreducible

Gow characters lying over θ, then Li−1 has 2
ℓ−(i−1) irreducible Gow characters

lying over θ. This is the inductive step and our claim follows.
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