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1. Introduction

This paper was inspired by Susumu Ariki [2]. Recall that the group ring RSn of
the symmetric group Sn over an integeral domain R is a cellular algebra, in the sense of
Graham-Lehrer. Ariki noted that the cell modules for RSn have combinatorially described
RS`-filtrations. Here we exploit the dual result for Specht modules.

The centralizer algebras in question are RSS`
n , where S` is the centralizer of {`+1, . . . , n}

in Sn, for ` ≤ n. RSS`
n is the set of elements in the group ring RSn that are fixed under

conjugation by elements of S`. So RSS`
n has a basis consisting of the sums C+ in RSn of

S`-orbits C on Sn.
Let Z(RS`) be the centre of the group ring RS` and let S ′n−` be the centralizer of
{1, . . . , `} in Sn. Then S ′n−`

∼= Sn−` and S` × S ′n−` is a subgroup of Sn. The elements
Li := (1, i) + · · · + (i − 1, i) of RSn, for i = 2, . . . , n, are called Murphy elements. Each
of L`+1, . . . , Ln is invariant under the conjugation action of S`. G. Olshanskii showed
that RSS`

n is generated, as R-algebra, by L`+1, . . . , Ln, over the subalgebras Z(RS`) and
RS ′n−`.

We are interested in the modular representation theory of RSS`
n , in particular with the

structure and representations of kSS`
n , where k is a field of prime characteristic p. To this

end, we take (F,R, k) to be a p-modular system, in the sense of Nagao-Tsushima.
The irreducible FSn-modules are the Specht modules Sλ, one for each partition λ of

n. Then the irreducible FSS`
n -module are HomFS`

(Sµ, Sλ), one for each pair of partitions
(λ, µ), where µ is a partition of ` contained in λ (see below), with corresponding Specht
module Sµ for FS`.

G. Murphy [6] showed that each Specht module Sλ has a basis of simultaneous eigenvec-
tors for the Murphy elements L2, . . . , Ln. This basis coincides with Young’s seminormal
basis. In particular, it is easy to write down the representing matrices for the basic
transpositions (1, 2), . . . , (n− 1, n) with respect to this basis.

Following the approach pioneered by Okounkov-Vershik (in particular the notion of
Gelfand-Tsetlin subalgebras) each of the modules HomFS`

(Sµ, Sλ) has a basis of simulta-
neous eigenvectors for the Murphy elements L`+1, . . . , Ln. Once again, the representing
matrices for the transpositions (`+ 1, `+ 2), . . . , (n− 1, n) in S ′n−` are known and simple.
See [5, 2.3.3] for details about this approach.
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Here we are concerned with constructing anR-form Sλ/µ for the module HomFS`
(SµF , S

λ
F ).

So Sλ/µ is an RSS`
n -submodule of HomFS`

(SµF , S
λ
F ), that is free as R-module, and that con-

tains an F -basis of HomFS`
(SµF , S

λ
F ). Our R-form has some very attractive features. It

occurs ‘naturally’ in a combinatorially defined subquotient of Sλ. It has a basis naturally
indexed by the standard λ/µ-skew tableau. This basis satisfies analogues of the Garnir
relations. Finally, the Murphy elements act by upper-triangular matrices on the standard
basis.

The matrices representing the elements of RSS`
n with respect to an R-basis of Sλ/µ have

entries in R. It follows that we can take their images modulo the unique maximal ideal
J(R) of R, to get a representation of RSS`

n (or kSS`
n ) over k.

The point about doing this p-modular reduction is that the composition factors of the
p-reductions of the modules Sλ/µ include all irreducible kSS`

n -modules. Moreover, the de-
composition matrix (recording the multiplicities of irreducible in the modular reductions)
determines the block linkage of kSS`

n , and hence the blocks of both this algebra and RSS`
n .

Finding the blocks would be trivial if the natural map Z(RSS`
n )→ Z(kSS`

n ) were surjec-
tive. We do not know whether this is the case, at the present time. The analogous result
for the centres of degenerate cyclotomic affine Hecke algebras has recently been shown to
hold by J. Brundan [1]. H. Ellers and the author [3] computed the blocks of RSS`

n (but
not the centre of kSS`

n ) for ` ≥ n− 3.
The elements L`+1, . . . , Ln and the basic transpositions in S ′n−` satisfy the defining

relations of a degenerate affine Hecke algebra Hn−`. So RSS`
n contains a subalgebra that

is a quotient of the degenerate affine Hecke algebra. Moreover, RSS`
n is generated by this

subalgebra and Z(RS`). The latter algebra is central in RSS`
n and is practically irrelevant

to the construction of our modules.
Our construction appear to concur with the construction of skew Specht modules given

by Arun Ram in [7]. In particular compare the ‘Garnir Relations’ given in Theorem 9
below and [7, Theorem 5.5]. There are significant differences. Ram works with modules
of the affine Hecke algebra which are called calibrated or completely splittable. Each of his
modules factors through an appropriate cyclotomic quotient. Our modules can be lifted
to modules for the degenerate affine Hecke algebras and their cyclotomic quotients.

There is a well-established way of translating results back and forth between the affine
Hecke algebra and its degenerate version. However, we have not found a completely
satisfactory explanation and description for this process. We prefer the direct approach
outlined here, which has not appeared in the literature to date, as far as we can tell.

One strength of our approach is that we retain the connection between irreducible mod-
ules for FSS`

n and homomorphism spaces between irreducible modules for FSn and FS`.
This may have applications to the induction and restriction functors between mod(RS`)
and mod(RSn). In addition, our approach is elementary, in that all the key concepts can
be found in [4]. We hope to mimic the approach of James to the construction of all ir-
reducible kSn-modules as quotients of certain Specht modules to construct all irreducible
modules for kSS`

n .
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Generally R is an integral domain, F is the field of fractions of R, and char(F ) = 0. If
M is an R-module, then MF := M ⊗R F is the F -vector space obtained by extension of
scalars.

2. Review of the Combinatorics

2.1. A dominance order on tabloids. In this section we make slight adaptations to
some notation and results from [4].

Let n be a non-negative integer. A composition of n is a sequence λ = (λ1, λ2, . . . ) of
non-negative integers whose sum is n. We write λ |= n. The λi are called the parts of λ.
Each composition λ has an associated diagram [λ], which is oriented using the anglophone
convention: left and top justified. For example

[3, 2, 2, 1] = [2, 1, 3, 2] =

The transpose diagram [λ]′ is obtained by reflecting [λ] in its main diagonal. It need
not be the diagram of a composition. Examples:

[3, 2, 2, 1]′ = [2, 1, 3, 2]′ =

The dominance partial order D on compositions is

αD β if
∑j

i=1 αi ≥
∑j

i=1 βi, for each j ≥ 1.

A λ-tableau is a bijection t : [λ]→ {1, . . . , n}. We use the notations:

• tab(λ) for the column standard λ-tableau: increasing down columns.
• std(λ) for the standard λ-tableau: increasing down columns and along rows.

A partition of n is a composition λ such that λ1 ≥ λ2 ≥ . . . . We write λ ` n. The
transpose [λ]′ of the diagram of a partition λ is the diagram of the transpose partition λ′

of n, defined by

λ′i = #{j | λj ≥ i}, for each i ≥ 1.

A tabloid of n is an ordered set partition of {1, . . . , n}. We allow empty sets as parts of
a tabloid. For example ({1, 2, 3}, {}, {4, 5}) and ({1, 2, 3}, {4, 5}, {}) are different tabloids
of 5. Given a λ-tableau t, the entries in the rows of t form a tabloid, which we denote by
{t}. We call this the row-tabloid of t. For example{

1 2 3
4 5

}
=

{
2 1 3
5 4

}
= ({1, 2, 3}, {4, 5})
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If λ is a partition, the entries in the columns of t also form a tabloid, which we denote by
|t|. We call this the column-tabloid of t. For example

∣∣∣∣ 1 2 3
4 5

∣∣∣∣ = ({1, 4}, {2, 5}, {3}),
∣∣∣∣ 2 1 3

5 4

∣∣∣∣ = ({2, 5}, {1, 4}, {3})

We define the composition sequence (τ (1), τ (2) . . . , τ (n)) of a column tabloid |t| as follows:

τ
(i)
j := the number of entries in column j of |t| that are ≤ i.

In particular τ (i) is a composition of i, and τ (n) = λ′, if λ ` n. Clearly |t| can be recovered
from its composition sequence. So we may write |t| ←→ (τ (i)). For example

2 4 1 5
3 6

←→ ([0010], [1010], [2010], [2110], [2111], [2211])

G. D. James implicitly uses the following total order > on column-tabloids in order to
prove that the standard polytabloids form a basis for a Specht module. If s, t are tableau,
then

|t| > |s| if for the largest i in which they differ, i occurs further to the left in t than in s.

However, such a total order is too crude for our purposes, as we will need to keep track
of the positions of each of the entries 1, . . . , ` in a column-tabloid. For this reason, we use
the following partial order D on column-tabloids. This is similar to the partial order on
row-tabloids considered by James. Suppose that |t| has composition sequence (τ (i)) and
|s| has composition sequence (σ(i)). Then

|t|D |s| if and only if τ (i) E σ(i) for each i ≥ 1.
For example, here is the D lattice for (22, 12) column-tabloids:
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3 1
4 2
5
6

2 1
4 3
5
6

� @
1 2
4 3
5
6

2 1
3 4
5
6

@ � @
1 2
3 4
5
6

2 1
3 5
4
6

� @ � @
1 3
2 4
5
6

1 2
3 5
4
6

2 1
3 6
4
5

@ � @ �
1 3
2 5
4
6

1 2
3 6
4
5

� @ �
1 4
2 5
3
6

1 3
2 6
4
5

@ �
1 4
2 6
3
5

1 5
2 6
3
4

Note that the most dominant λ column-tabloid is obtained by filling [λ] with n, . . . , 2, 1
by columns, working from left-to-right. Likewise, the least dominant λ column-tableau is
obtained by filling [λ] with 1, 2, . . . , n by columns, again working from left-to-right.

We need the following elementary result:

Lemma 1. Let |t| be a column tabloid and let X = {x1 < · · · < xr} be a subset of column
c of |t| and Y = {y1 < · · · < yr} be a subset of column c + 1 of |t|, with x1 > yr. Set
π =

∏r
i=1(xi, yi) and suppose that |t| ←→ (τ (i)) and |tπ| ←→ (σ(i)). Then

τ (i)
{
C σ(i), for y1 ≤ i < xr.
= σ(i), for all other values of i.

5



In particular, |t|B |tπ|.

Proof. It suffices to prove the result when r = 1. Now τ
(i)
j = σ

(i)
j , unless y1 ≤ i < x1 and

j ∈ {c, c+ 1}. Moreover, if y1 ≤ i < x1, then

τ (i)c = σ(i)
c − 1, τ

(i)
c+1 = σ

(i)
c+1 + 1.

It follows that τ (i) C σ(i) for all such i. The lemma follows easily from these facts. �

2.2. Specht modules and Garnir relations. In this section λ is a partition of n and
t is a λ-tableau. We use St to denote the row stabilizer of t. So St is conjugate in Sn to
the Young subgroup Sλ and {t} = {tπ | π ∈ St}. Set t′ as the transpose of t. Then t′ is a
λ′-tableau. Clearly St′ coincides with the column stabilizer of t and |t| = {tπ | π ∈ S ′t}.

For H ≤ Sn, we have elements of RSn defined by

H+ :=
∑
σ∈H

σ, H− =
∑
σ∈H

sgn(σ)σ.

As is customary, Mλ denotes the (right) RSn-permutation module with basis the λ-
tabloids. Here {t}π := {tπ}, for each π ∈ Sn. Note that Mλ ∼= S+

t RSn, as right
RSn-modules.

The Specht module Sλ is the RSn-submodule ofMλ generated by any one λ-polytabloid:

et := {t}S−t′ .

Then etπ = etπ, for each π ∈ Sn and in particular we have the Column relation

(1) etπ = sgn(π)et, for each π ∈ St′ .

Also Sλ ∼= S+
t S
−
t′RSn, as RSn-modules. It is known that {es | s ∈ std(λ)} is an R-basis

of Sλ. This is the standard basis of Sλ.
We call X, Y a Garnir pair for t if for some c ≥ 1, X is a subset of column c of t, Y is

a subset of column c + 1 of t, and |X| + |Y | > λ′c (= the length of column c). Let GX,Y

be a set of coset representatives (including 1) for the subgroup SX × SY in SX∪Y . The
Garnir relation corresponding to X, Y is

(2) etG
−
X,Y = 0, or et =

∑
16=σ∈GX,Y

−sgn(σ) etσ.

Now suppose that t is column standard. We say that X, Y is an elementary Garnir
pair for t if there exist nodes (r, c), (r, c + 1) ∈ [λ] such that X is the set of entries in or
below row r in column c of t, Y is the set of entries in or above row r in column c+ 1 of
t, and x > y for all x ∈ X and y ∈ Y . If X = {x1 < · · · < xr} and Y = {y1 < · · · < yq}
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then columns c and c+ 1 of t look like (c.f. [4, Section 8])

∗ y1
∧

...
...
∧

x1 > yq

∧ ...
... ∗
∧
xr

We have the following result relating to our partial order D on column tabloids.

Lemma 2. Suppose that X, Y is an elementary Garnir pair for t ∈ tab(λ). Then

|t|D |tσ|, for each σ ∈ GX,Y .

Proof. We can factorize σ as the product of a permutation in Ct times
∏r

i=1(xi, yi) for
xi ∈ X and yi ∈ Y as in Lemma 1. As the relation D depends only on the column sets of
t and tσ, the result now follows from Lemma 1. �

Each polytabloid et can be expressed as a linear combination of standard polytabloids
by applying a succession of elementary Garnir relations to et. This is the gist of the proof
of Theorem 8.4 in [4]. We deduce that

The Specht module Sλ is the quotient of the free R-module generated
by all polytabloids et by the RSn-submodule generated by the column
relations (1) and the elementary Garnir relations (2).

Corollary 3. Suppose that t ∈ tab(λ). Then

et =
∑

s∈std(λ)

ζses,

where ζs ∈ R, for all s, and ζs 6= 0 implies that |t|D |s|.

3. The Modules

3.1. RS`-filtration on Sλ. Fix a partition λ of n, a column-standard λ-tableau t and let
(τ (i)) be the composition sequence of |t|. We use t↓I to denote the restriction of t to an
interval I of {1, . . . , n} for t ∈ tab(λ). We call (λ, µ) a partition pair of (n, `) and write

(λ, µ) ` (n, `),

if µ ` ` and µi ≤ λi, for each i ≥ 1. So [µ] ⊆ [λ] and [λ/µ] := [λ]\[µ] is a skew diagram
(with n− ` boxes). A λ/µ-tableau is a bijection [λ/µ]→ {`+ 1, . . . , n}. The dominance
order on partition pairs is (λ, µ)D (α, β) if λB α, or λ = α and µD β.

Fix (λ, µ) ` (n, `). Then we use the following notations:
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• tab(λ, µ) = {t ∈ tab(λ) | τ (`) = µ′}.
• tab(λ/µ) the set of column standard skew λ/µ-tableau.
• tab(λ, u), for u ∈ tab(λ/µ), the set of t ∈ tab(λ, µ) with t↓[`+1,n] = u.

Note that t ∈ tab(λ, µ) if and only if t↓[1,`] ∈ tab(µ) e.g. if λ = (22, 12) and µ = (2, 1),
then

(3)

tab(λ, µ) =


2 1
3 4
5
6

,

1 2
3 4
5
6

,

1 3
2 4
5
6

,

2 1
3 5
4
6

,

1 2
3 5
4
6

,

1 3
2 5
4
6

,

2 1
3 6
4
5

,

1 2
3 6
4
5

,

1 3
2 6
4
5

,


tab(λ/µ) =

u = 4
5
6

, v = 5
4
6

w = 6
4
5


The first three tableau in tab(λ, µ) belong to tab(λ, u), the second three to tab(λ, v) and
the last three to tab(λ,w).

There is a bijection, preserving standard tableau

tab(µ)× tab(λ/µ)←→ tab(λ, µ).

Here (s, u) ∈ tab(µ)× tab(λ/µ) corresponds to t ∈ tab(λ, µ) if s = t↓[1,`] and u = t↓[`+1,n]
.

We indicate this by writing t = s.u.
We also need the following notations

• tab(λ,Eµ) = {t ∈ tab(λ) | τ (`) D µ′}.
• tab(λ,Cµ) = {t ∈ tab(λ) | τ (`) B µ′}.

In any of the above definitions, we replace tab( ) by std( ) if the tableau are required to
be standard. We note that in general

(4) tab(λ,Eµ) = tab(λ, µ)
⋃̇

tab(λ,Eµ).

Example: if λ = (22, 12) and µ = (2, 1), then

tab(λ,Cµ) =


1 4
2 5
3
6

,

1 4
2 6
3
5

,

1 5
2 6
3
4


Now consider the following R-subspaces of Sλ:

Nλ/µ := sp{et | t ∈ tab(λ,Eµ)},
Jλ/µ := sp{et | t ∈ tab(λ,Cµ)}.

In particular Nλ/ν ⊆ Nλ/µ, for (λ, ν)E (λ, µ) and

Jλ/µ =
∑
νCµ

Nλ/ν is contained in Nλ/µ.
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Let t ∈ tab(λ, ν), with ν E µ, and suppose that π ∈ S`. Then |tπ| = |s|, for some
s ∈ tab(λ, ν). As etπ = etπ = ±es, it follows that Nλ/µ and Jλ.µ are RS`-submodules of
Sλ.

Lemma 4. Let t ∈ tab(λ,Eµ) and s ∈ tab(λ), with tD s. Then s ∈ tab(λ,Eµ).

Proof. This is an immediate consequence of the definitions. �

Corollary 5. Nλ/µ has basis {et | t ∈ std(λ,Eµ)} and Jλ/µ has basis {et | t ∈ std(λ,Cµ)}.
Hence

Nλ/µ/Jλ/µ has basis {et + Jλ/µ | t ∈ std(λ/µ)}.

Proof. The last statement is a consequnce of the first two statements. These in turn are
consequences of Corollary 3 and Lemma 4 and the fact that {et | t ∈ std(λ} is a basis of
Sλ. �

3.2. An R-form for the RSS`
n -module HomRS`

(Sµ, Sλ). In this section (λ, µ) is a par-
tition pair of (n, `). For u ∈ std(λ/µ), let (Sµ)u be an isomorphic copy of Sµ. For
s ∈ tab(µ), denote the element of (Sµ)u corresponding to es ∈ Sµ by eus . Then

(Sµ)⊕std(λ/µ) :=
⊕

u∈std(λ/µ)

(Sµ)u

is the external direct sum of d(λ/µ) copies of Sµ, one for each u ∈ std(λ/µ).

Theorem 6. Set φ(eus ) := es.u+Jλ/µ, for each (s, u) ∈ tab(µ)×std(λ/µ). Then φ extends
to an RS`-module isomorphism

(Sµ)⊕std(λ/µ) ∼=
Nλ/µ

Jλ/µ
.

Proof. First define φ only on the standard basis. So φ(eus ) = es.u + Jλ/µ, for each
(s, u) ∈ std(µ) × std(λ/µ). Corollary 5 implies that φ extends to an R-isomorphism
(Sµ)⊕std(λ/µ) −→ Nλ/µ/Jλ/µ.

Now let (s, u) ∈ std(µ)× tab(λ/µ), set t := s.u ∈ tab(λ/µ). Then etπ = esπ.u, for each
π ∈ S`. It follows that in order to show that φ is an RS`-homomorphism, and also that
φ(eus ) := et + Jλ/µ, it is enough to show that the elements et + Jλ/µ of Nλ/µ/Jλ/µ satisfy
all column relations (1) and the standard Garnir relations of type (2) arising from s.

The column relations for es are satisfied. For, each column of s is contained in a column
of t. So S ′s ≤ S ′t and (1) gives etπ = sgn(π)et, for each π ∈ S ′s. Suppose then that X, Y is
a standard Garnir pair for s. Set t := s.u ∈ tab(λ/µ) and let Z be the set of entries > `
in the column occupied by X in t . Then X ∪ Z, Y is a standard Garnir pair for t and
(2), applied in Sµ and then in Sλ, gives

esG
−
X,Y = 0, and etG

−
X∪Z,Y = 0, respectively.

We claim that
(et + Jλ/µ)G−X,Y = 0.
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This will follow if we show that

etπ ∈ Jλ/µ, for each π ∈ GX∪Z,Y \GX,Y .

So let π ∈ GX∪Z,Y \GX,Y . After multiplication by an element of Ct, we may assume that
π = π′

∏r
i=1(zi, yi), for some π′ ∈ S`, zi ∈ X and yi ∈ Y . Now tπ′ ∈ tab(λ, µ). So Lemma

1 implies that tπ ∈ tab(λ,Cµ), whence etπ ∈ Jλ/µ. This proves our claim, and completes
the proof of the Theorem. �

Let λR denote the partition of n − 1 obtained by removing a removable node R from
[λ]. The Branching rule for Specht modules is

SλF↓Sn−1 =
∑
R

SλRF ,

where R runs over the removable nodes of λ. The Young graph (or Bratelli diagram for
S1 ≤ · · · ≤ Sn ≤ . . . ) is formed by taking all partitions of the non-negative integers
as nodes, and taking all pairs (λ, λR) as edges. There is a bijection between standard
λ-tableau t defines a path in the Young graph that starts at λ and proceeds to the empty
partition through λRn , λRnRn−1 , . . . , where Ri is the node occupied by i in t. This bijection
restricts to a bijection between standard λ/µ-tableau and paths in the branching graph
starting at λ and ending at µ. We may iterate the branching rule to show that:

(5) dim
(
HomFS`

(SµF , S
λ
F )
)

= #std(λ/µ).

Note that HomRS`
(Sµ, Sλ) is a full R-lattice in HomFS`

(SµF , S
λ
F ). In particular its R-rank

is #std(λ/µ).
Let δ be the most dominant µ-tableau: [µ] filled by rows from left to right and top to

bottom.

Corollary 7. Given u ∈ std(λ/µ), there exists an FS`-homomorphism θu : SµF → SλF
such that

θu(eδ) = eδ.u + εu, for some εu ∈ Jλ/µ.
Moreover, {θu | u ∈ std(λ/µ)} is a basis for HomFS`

(SµF , S
λ
F ).

Proof. Theorem 6 enables us to construct a short exact sequence of FS`-modules

0 −→ J
λ/µ
F −→ N

λ/µ
F

φ−→(Sµ)
⊕std(λ/µ)
F −→ 0.

This sequence splits over FS`, as every FS`-module is semisimple. Let φ−1 be a map
that splits φ. Then φ−1(euδ ) = eδ.u + εu, for some εu ∈ Jλ/µ. Restricting φ−1 to (SµF )u, we
deduce the existence of the FS`-maps θu.

As {θu(eδ) | u ∈ std(λ/µ)} are linearly independent elements of Sλ, it follows that
{θu | u ∈ std(λ/µ)} are linearly independent elements of HomFS`

(SµF , S
λ
F ). That the θu

form a basis of HomFS`
(SµF , S

λ
F ) now follows from (5). �
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For example, if λ = (22, 12) and µ = (2, 1), then HomFS2(S
(2,1), S(22,12)) is 3-dimensional.

Now δ = 1 2
3

and c.f. (3), it can be shown that

θu(eδ) = e 1 2
3 4
5
6

− 1
3
e 1 4
2 5
3
6

+ 1
3
e 1 4
2 6
3
5

θv(eδ) = e 1 2
3 5
4
6

− 1
3
e 1 5
2 4
3
6

+ 1
3
e 1 5
2 6
3
4

θw(eδ) = e 1 2
3 6
4
5

− 1
3
e 1 4
2 6
3
5

+ 1
3
e 1 4
2 5
3
6

Of course, the whole point of this note is that we don’t need those fractional terms in
Jλ/µ in order to figure out the action of RSS`

n on an R-form for HomFS2(S
(2,1), S(22,12)).

We now give a key definition. Consider the following elements of Nλ/µ/Jλ/µ:

eu := eδ.u + Jλ/µ, for each u ∈ tab(λ/µ).

Then the following is an R-subspace of Nλ/µ/Jλ/µ:

Sλ/µ := sp{eu | u ∈ std(λ/µ)}.

Theorem 8. Sλ/µ is an RSS`
n -submodule of Nλ/µ/Jλ/µ and there is an FSS`

n -module
isomorphism

θ : S
λ/µ
F −→ HomFS`

(Sµ, Sλ), such that
θ(eu) = θu, for each u ∈ std(λ/µ).

Proof. It follows from Corollary 7 that

Sλ/µ = {φ(eδ) | φ ∈ HomRS`
(Sµ, Nλ/µ/Jλ/µ)}.

Suppose that z ∈ RSS`
n and φ ∈ HomRS`

(Sµ, Nλ/µ/Jλ/µ). Then φ(eδ)z = (φz)(eδ). As
φz ∈ HomRS`

(Sµ, Nλ/µ/Jλ/µ), we deduce that φ(eδ)z ∈ Sλ/µ. So Sλ/µ is RSS`
n -invariant.

Comparison of dimensions show that there is an F -isomorphism θ : S
λ/µ
F −→ HomFS`

(Sµ, Sλ),
such that θ(φ(eδ)) = φ. But θ is an FS`-isomorphism, as

θ(φ(eδ)z) = θ((φz)(eδ)) = φz = θ(φ(eδ))z.

�

3.3. Garnir relations for Sλ/µ. Let v ∈ tab(λ/µ) (column standard but not necessarily
standard). In order to understand the action of RSS`

n on Sλ/µ, we need relations which
allow us to write ev in terms of the basis {eu | u ∈ std(λ/µ)}.

To this end, we call X, Y a standard Garnir pair for v if there exists (r, c), (r, c + 1) ∈
[λ/µ] such that X consists of the entries in column c in or below row r in v, while Y
consists of the entries in column c+ 1 in or above row r in v. Let GX,Y be a set of coset
representatives (including 1) for the subgroup SX × SY in SX∪Y .
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Theorem 9. [Elementary Garnir relations] Let v ∈ tab(λ/µ) and let X, Y be a standard
Garnir pair for v. Then

evG
−
X,Y = 0.

Proof. We consider the polytabloid eδ.v in Nλ/µ. Let Y1 be the set of entries in column
c+ 1 of δ. Then X, Y1 ∪ Y is a standard Garnir pair for eδ.v. In particular

eδ.vG
−
X,Y1∪Y = 0.

Now suppose that σ ∈ GX,Y1∪Y \GX,Y . The effect of σ is to interchange some entries
> ` in column c of δ.v with entries < ` in column c + 1 of δ.v. Let δ.v ↔ (τ (i)) and
(δ.v)σ ↔ (ρ(i)). Then it is clear that

ρ
(`)
i


> τ

(`)
i , for i = c.

< τ
(`)
i , for i = c+ 1.

= τ
(`)
i , for i 6= c, c+ 1.

So ρ(`) B τ (`) = µ′, or (δ.v)σ ∈ tab(λ,Cµ). It follows that eδ.vσ ∈ Jλ/µ. The result follows
easily from this. �

Corollary 10. Sλ/µ = sp{ev | v ∈ tab(λ/µ)}. All relations between the ev arise from the
column relations evπ = sgn(π)ev, for π ∈ Sv′ and the elementary Garnir relations of the
previous theorem.

3.4. Action of the Murphy elements on Sλ/µ. We consider the action of the Murphy
elements L`+1, . . . , Ln on Sλ/µ. Suppose that v ∈ std(λ/µ) and i ∈ {` + 1, . . . , n}. Set
α = c− r, where i occupies node (r, c) in [λ/µ].

If C is the set of elements in a column of δ.v to the left of i in v, we have∑
j∈C

eδ.v(i, j) = eδ.v,

while if j and i share a column in δ.v, we have

eδ.v(i, j) = −eδ.v.
Let

Y = {y | y < i and y is to the right of i in v},
Y>` = Y ∩ {`+ 1, . . . , n},
Z = {z | z > i and z is to the left of i in v}.

Following Murphy [6], we obtain

eδ.vLi = αeδ.v −
∑
z∈Z

eδ.v(i, z) +
∑
y∈Y

eδ.v(i, y).

Then considering this equation in Nλ/µ/Jλ/µ, we obtain an identity in Sλ/µ

evLi = αev −
∑
z∈Z

ev(i,z) +
∑
y∈Y>`

ev(i,y).
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Of course, we have to apply the relations of Corollary 10 in order to express this in terms
of the standard basis eu, u ∈ std(λ/µ).

For example, we consider the action of RSS3
6 on S(22,12)/(2,1). The algebra is generated

by Z(RS3), the transpositions (4, 5), (5, 6) and the Murphy elements L4, L5, L6. The
elements of Z(RS3) acts as scalars on the Specht module S(2,1), and by the same scalars

on S(22,12)/(2,1). Next we have, with the notation of (3), the following representing matrices
with respect to the ordered basis eu, ev, ew:

(4, 5) −→

 0 1 0
1 0 0
0 0 −1

 (5, 6) −→

 −1 0 0
0 0 1
0 1 0



L4 −→

 0 −1 1
0 −2 0
0 0 −2

 L5 −→

 −2 −1 0
0 0 −1
0 0 −3

 L6 −→

 −3 0 −1
0 −3 1
0 0 0


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