OPEN PROBLEMS INSPIRED BY ADAM ALLAN'S VISIT

ADAM ALLAN JOHN MURRAY

Here p is a rational prime and k is an algebraically closed field of characteristic p. Also G is a finite group and H is a subgroup of G. All algebras and modules are finite dimensional.

Lemma 1 (Morita?). Let A, B be k-algebras. Then $A \otimes_k B$ is quasi-Frobenius iff both A and B are quasi-Frobenius.

Question 2. Let A, B be k-algebras. Then $A \otimes_k B$ is symmetric iff both A and B are symmetric?

Lemma 3. $G = N \otimes P$ where N is a p'-group and P is a p-group. Let b be a block of N and let B be the unique block of G covering b. Suppose that $D \leq P$ is a defect group of B. Then

$$B^P \cong b^D \otimes_k kP.$$

So B^P is q.f. iff b^D is q.f.

Question 4. Suppose that G is p-nilpotent, and that B is block of kG with a defect group P that is a Sylow p-subgroup of G. Is B^P symmetric or quasi-Frobenius?

Lemma 5 (Allan). Let P be a cyclic p-group, and let M be a kP-module. Then $End_{kP}(M)$ is symmetric iff M is 'isotypic' as kP-module.

Proof. Jordan form theory.

Example 6. Let N be an extra-special group of order 5^{1+2} and exponent 5. Then Aut(N) contains a cyclic group P of order 3 which centralizes Z(N). Set $G = N \rtimes P$ and let $\zeta \in Irr(N)$ lie over a non-trivial irreducible character of Z(N). Then $\zeta(1) = 5$ and there is a unique 3-Brauer character θ of G which extends ζ . Moreover, the 3-block B of G containing θ contains all irreducible characters $Irr(G \mid \zeta)$ of G lying over ζ . Let M be the irreducible kG-module whose Brauer character is θ . So $M \downarrow_N$ affords ζ . Also $B \cong End_k(M)$ as k-algebras. It can be checked that $M \downarrow_P \cong kP \oplus kP/P^+kP$, as right kP-modules. In particular, $B^P = End_{kP}(M)$ is not quasi-Frobenius.

Lemma 7. Suppose that G is p-nilpotent. Let B_0 be the principal p-block of G. Then B_0^H is symmetric iff $[H, G] \leq O_{p'}(G)$.

Question 8. Suppose that $p \not| [G : H]$. Is it true that if kG^H is q.f. then G is p-nilpotent and the Sylow p-subgroups of G are abelian? This is true if G is p-nilpotent. If we remove the assumption on [G : H], and kG^H is q.f., is it true that the Sylow p-subgroups of H are abelian?

ADAM ALLAN JOHN MURRAY

Lemma 9 (Allan). Suppose that $p \not| |H|$. Then kG^H is symmetric.

Proof. The symmetrizing form on kG^H is just the restriction of the usual form on kG to kG^H .

Lemma 10 (Allan). Let B be a block of kG that has defect 0. Then B^H is symmetric.

Proof. Let M be the unique irreducible B-module. Then M is projective and $B \cong End_k(M)$, as k-algebras. Moreover, $B^H \cong End_{kH}(M \downarrow_H)$. But $M \downarrow_H$ is projective. So $End_{kH}(M \downarrow_H)$ is a symmetric algebra, by a standard result. \Box

Question 11. Let b be a block of kH that has defect 0. Is $(kGe_b)^H$ symmetric?

Lemma 12 (Allan). Let G be a dihedral group. If p = 2 then kG^H is q.f. iff $[H, G] \leq O_{2'}(G)$. If $p \neq 2$, then kG^H is q.f. iff $p \not| |H|$.

 $kS_4^{S_3}$ is symmetric, when p = 2, despite the fact that $|S_3|$ is even.

Question 13. Let e be a block idempotent of kS_n and let f be a block idempotent of kS_ℓ with $ef \neq 0$, when is $kS_n^{S_\ell}ef$ a symmetric algebra? When does this algebra have tame/finite representation type? Special case: $\ell = n - 1$?

Question 14. Suppose that |H| = 2 and p = 2. Is $Z(kG^H)$ generated by Z(kG) and kH? What if we replace the hypothesis by |H| = p and $p \neq 2$?

Note that kG is self-dual as kG^H -module.

Question 15. When is kG a projective kG^H -module?

Lemma 16. Suppose that kG is projective as kG^H -module. Then kG^H is a self-injective algebra.

Proof. Two facts: the dual of a projective module is injective, and each pim is a direct summand of the regular module.

We need to show that each projective indecomposable kG^H -module P is injective. Now P is a submodule of kG^H , and hence a submodule of kG. So P^* is a submodule of $kG^* = kG$. As P^* is injective, this implies that P^* is even a direct summand of kG. But each indecomposable direct summand of kG is projective, by hypothesis. We deduce from the fact that P^* is projective that P is injective.

Note: if kG is a projective kG^H -module, it follows from the proof above that the regular kG^H -module is a direct summand of kG.

Note: kG is a projective Z(kG)-module iff G is p-nilpotent and $G/O_{p'}(G)$ is abelian (Müller's theorem).

Question 17. If kG^H is q.f., is it necessarily symmetric? a Hopf algebra? Note that Hopf algebras are symmetric (reference?). Note that $Z(kS_3)$ is not a Hopf subalgebra of kS_3 , p = 2, but it is q.f.

OPEN PROBLEMS INSPIRED BY ADAM ALLAN'S VISIT

Question 18. When is it the case that every irreducible kG^H -module has the form $Hom_{kH}(S_H, S_G)$, where S_X is an irreducible kX-module?

Question 19. When is $End_{kG^{H}}(kG) = End_{kH \times G}(kG)$?

Question 20. Formulate and prove a first main theorem for the blocks of kG^{H} .

Question 21. Describe the blocks and irreducible modules of kG^H when G is p-solvable.