Describe an experiment to show how the capacitance of a pair of parallel plates varies with their common area.

(d) When a p-type region and an n-type region are formed in the same silicon crystal a depletion layer is formed. Explain the underlined terms.

Describe an experiment to plot the characteristic curve of a semiconductor diode. Sketch the graph you would expect to obtain.

LEAVING CERTIFICATE EXAMINATION, 1988

PHYSICS — HIGHER LEVEL

Answer all questions in Section A.
Answer two questions from Section B and three questions from Section C.

SECTION A (120 marks)

1. Answer five of the following items, (i), (ii), (iii), etc. In the case of each item write the letter corresponding to the correct answer in the box provided.

 (i) On a certain day the height of the mercury column in a mercury barometer is 74.0 cm. Given that the density of mercury is 13.6 × 10³ kg m⁻³ and taking g = 9.81 m s⁻², the atmospheric pressure is

 A. 9.87 × 10⁵ Pa
 B. 9.87 × 10⁴ Pa
 C. 9.87 × 10³ Pa
 D. 1.01 × 10⁵ Pa
 E. 1.01 × 10⁴ Pa.

 Answer [Blank] (6)

 (ii) The resistance of a length of wire at the freezing point and boiling point of water is 4.6 Ω and 6.8 Ω, respectively. Its resistance at room temperature is 5.0 Ω. Room temperature, as measured on a Celsius temperature scale based on the resistance of the wire, correct to two significant figures, is

 A. 35 °C
 B. 18 °C
 C. 22 °C
 D. 45 °C
 E. 84 °C.

 Answer [Blank] (6)

 (iii) The unit of sound intensity is the

 A. W
 B. W m⁻²
 C. W m
 D. Hz
 E. dB.

 Answer [Blank] (6)

 (iv) When a beam of monochromatic light enters a block of glass from air

 A. its speed decreases and its wavelength increases.
 B. its speed decreases and its frequency increases.
 C. its speed increases and its frequency remains the same.
 D. its speed decreases and its wavelength remains the same.
 E. its speed decreases and its wavelength decreases.

 Answer [Blank] (6)

 (v) The capacitance of a capacitor is 2.2 μF. When the potential difference between its plates is 10 V the energy stored in it is

 A. 1.1 × 10⁻¹ J
 B. 1.1 × 10⁻³ J
 C. 2.2 × 10⁻¹ J
 D. 1.1 × 10⁻⁵ J
 E. 2.2 × 10⁻⁴ J.

 Answer [Blank] (6)
(vi) The atomic number of a nucleus is Z and its mass number is A. In the nucleus there are
A. Z neutrons and A protons
B. A neutrons and Z protons
C. Z neutrons and $\frac{Z}{2}A$ protons
D. $A-Z$ neutrons and A protons
E. $A-Z$ neutrons and Z protons.

Answer: E

2. Answer five of the following.

(i) Define angular velocity

\[\text{Angular Displacement} \]

(ii) If a structure has a low U-value it is a good insulator.

(iii) What type of source is associated with a line emission spectrum?

\[\text{Monochromatic} \]

(iv) What important phenomenon did Thomas Young demonstrate at the beginning of the nineteenth century?

\[\text{Interference of light} \]

(v) What is meant by mutual inductance?

(vi) When $^{238}_{92}$U decays to $^{234}_{90}$Ta the number of α-particles emitted is 3

\[\frac{238}{92} \]

and the number of β-particles emitted is 2

\[\frac{38}{12} \]

3. Answer five of the following.

(i) Work may be defined as the product of Force and Displacement.

(ii) When a car of mass 1,000 kg is accelerated from rest to a speed of 20 m s\(^{-1}\) in 8 s the average power developed by the engine is 2.5 kW.

(iii) According to the kinetic theory of gases the average kinetic energy of the molecules of a gas is proportional to the \[\text{Temperature} \]

(iv) State Joule's law

\[P = I^2R \]

\[P \text{ Power} \]

\[I \text{ Current} \]

\[R \text{ Resistance} \]

(v) The energy of a photon is proportional to \[\text{Frequency} \]

The constant of proportionality is known as \[\text{Plank's constant} \]

(vi) Fission and fusion are two processes by which energy may be released in nuclear reactions. What is the difference between them? Fission is the splitting of a nucleus into two smaller nuclei. Fusion is the joining of two smaller nuclei into a larger.

22.
4. Fig. 1 shows the basic structure of a moving coil galvanometer. Answer five of the following.

(i) Name the parts labelled A, B and C.

A. \(\text{Coil} \)
B. \(\text{Spring} \)
C. \(\text{Soft Iron Core} \) (6)

(ii) What is the basic principle on which the moving coil galvanometer depends?

\(\text{Force acting on a coil in a magnetic field can cause a Torque} \) (6)

(iii) Name one other device (other than a meter) which is based on the same principle. \(\text{Electric Motor} \) (6)

(iv) How may a galvanometer be converted to an ammeter?

\(\text{May be connected in parallel} \) (6)

(v) When a galvanometer has been converted to an ammeter, the ammeter cannot normally be used to measure alternating current. If the ammeter is to be used for this purpose, name a device which must be connected in series with it. \(\text{Rectifier} \) (6)

(vi) When a galvanometer is to be used as an ohmmeter it has a \(\text{Rheostat} \) and a \(\text{P.D.} \) connected to it. (6)

LEAVING CERTIFICATE EXAMINATION, 1988

PHYSICS — HIGHER LEVEL

SECTION B (80 marks)

Answer two of the questions from this section.
Each question carries the same number of marks.

5. In an experiment to verify Newton's second law a constant force was applied to a body of mass 200 g and the resulting acceleration was determined. Additional masses, \(m \), were placed on the body and the acceleration was found in each case, the applied force being kept constant throughout. The following results were obtained.

<table>
<thead>
<tr>
<th>(\text{a/m/s}^2)</th>
<th>148</th>
<th>102</th>
<th>68</th>
<th>58</th>
<th>52</th>
<th>40</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{m/g})</td>
<td>0</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
</tr>
</tbody>
</table>

23.
Draw a suitable graph on graph paper and hence explain how these results verify Newton's second law. (21)

From the graph calculate the magnitude of the force applied to the body. (12)

Sketch a labelled diagram of an apparatus which might have been used in this experiment. (6)

6. In order to compare the specific heat capacities of copper and paraffin oil experimentally a student added hot copper to cold paraffin in a copper calorimeter. The following results were obtained by the student.

- Mass of calorimeter = 60.5 g
- Mass of calorimeter + oil = 94.8 g
- Temperature of calorimeter + cold oil = 16°C
- Mass of copper = 12.4 g
- Temperature of hot copper = 100°C
- Final temperature of calorimeter + oil + copper = 20°C

Calculate the ratio of the specific heat capacity of paraffin oil to that of copper. (21)

Explain how it may be concluded that the rise in temperature of the calorimeter and oil is the least accurate quantity used in calculating the final result. Give two ways in which the accuracy of this quantity could have been improved. (18)

7. The length, diameter and resistance of a nichrome wire were measured in an experiment to determine the resistivity of nichrome. The following values were obtained.

- Length = 8.56 cm
- Diameter = 0.22 mm
- Resistance = 27.9 Ω

Calculate a value for the resistivity of nichrome. (12)

Mention two precautions which should be taken, when determining the length of the wire, to ensure a more accurate result. (6)

Explain the steps involved in determining the diameter of the wire. (12)

Name two instruments which might have been used to measure the resistance of the wire and mention one precaution which should be taken to improve the accuracy of this measurement. (9)

SECTION C (200 marks)

Answer three questions from this section.
Each question carries the same number of marks.

8. Define (i) energy, (ii) momentum.

Describe an experiment to verify the principle of conservation of momentum. (21)

A radioactive nucleus, initially at rest, emits an alpha particle of mass 6.68×10^{-27} kg to produce a new nucleus of mass 3.67×10^{-21} kg. Explain how the principles of conservation of momentum and energy apply to this reaction. (12)

Calculate the ratio of the speed of the alpha particle to the speed of the new nucleus. Given that their total mass, when at rest, is 9.50×10^{-27} kg less than the mass of the original nucleus, calculate their total initial kinetic energy and hence the speed of each. (Speed of light in vacuum, $c = 3.00 \times 10^8$ m s$^{-2}$) (21)

9. (a) State the laws of reflection of light.

Use a ray diagram to show how an image is formed by a convex mirror. (9)

A concave mirror has a focal length of 20 cm. Find two positions at which an object may be placed so that the image formed may be twice the size of the object. (18)

(b) Draw a ray diagram to show how the final image is formed in an astronomical telescope in normal adjustment.

An astronomical telescope of magnifying power 20 is to be used in normal adjustment to observe the moon. Given that the distance from the surface of the earth to the surface of the moon is 3.7×10^8 m and that the radius of the moon is 1.7×10^6 m calculate (i) the angle subtended by the moon at the objective lens of the telescope, (ii) the angle subtended at the eyepiece lens of the telescope by the final image of the moon. (21)
10. Define electric field intensity.
Describe how an electric field pattern may be demonstrated in the laboratory.

Fig. 2 shows three equal positive charges, A, B and C, situated at the vertices of a right angled, isosceles triangle. If the magnitude of the force exerted by C on A is \(F \), what is the magnitude of the force exerted by C on B?\(^3\)

Given that the magnitude of each of the charges is 4 \(\mu \text{C} \) and that the distance between B and C is 20 cm, calculate the value of \(F \).

Hence, or otherwise, determine the magnitude and direction of the total field intensity at B due to A and C. \((\varepsilon_0 = 8.9 \times 10^{-12} \text{ F m}^{-1})\)

(ii) Lenz's law.
Describe an experiment to illustrate one of these laws.
A square coil of side \(l \) contains \(N \) turns of wire of total resistance, \(R \) (Fig. 3). It is travelling in a direction parallel to the side EH, as shown in the diagram, when it enters a magnetic field which is perpendicular to the plane of the coil and is of uniform magnetic flux density, \(B \). Given that the two terminals of the coil are connected together explain why the coil slows down as it is entering the field.

Use Faraday's law to show that the e.m.f. induced in the coil at any instant while it is entering the field is given by \(E = NBlv \), where \(v \) is the speed of the coil at that instant.

Hence, derive an expression, in terms of \(v \), for (i) the current in the coil, (ii) the force on the coil.

12. Draw a diagram showing the structure of (i) a bipolar transistor, (ii) a field effect transistor, labelling the terminals in each case.

Fig. 4 shows a temperature controlled switch based on a bipolar transistor. T is a semiconductor thermistor. Explain why the light emitting diode (LED) comes on when the thermistor is warmed.

Explain the function of each of the resistors \(R_1 \) and \(R_2 \).

Draw a circuit diagram for a NOT gate, labelling the input and output terminals, and give its truth table.
13. Answer any two of the following.

(a) Define simple harmonic motion.

(b) What is meant by resonance?

Describe an experiment to investigate the relationship between the natural frequency of a string and its length.

Name two factors, in addition to length, on which the natural frequency of a string depends and give the relationship between the frequency and one of these factors.

(c) The following is an extract from a report of a famous discovery which was made towards the end of the nineteenth century. Read the passage carefully and answer the questions which follow it.

"The most striking feature of this phenomenon is the fact that an active agent here passes through a black cardboard envelope which is opaque to the visible and ultra-violet rays of the sun or of the electric arc; an agent, too, which has the power of producing active fluorescence. The active agent proceeds from that spot where, according to the data obtained by different investigators, the cathode rays strike the glass wall."

(Adapted from "Source Book in Physics", Harvard University Press.)

(i) What was the name given to the "active agent"?

(ii) Who was the physicist who discovered this phenomenon?

(iii) In what way does the "active agent" differ from the "visible and ultra-violet rays of the sun"?

(iv) What are cathode rays? Explain how a beam of cathode rays may be produced.

(d) State the law of radioactive decay and explain what is meant by the half-life of a radioactive isotope.

Describe an experiment to determine the half-life of a short-lived radioactive isotope.

The decay constant of a certain radioactive isotope is $1.7 \times 10^{-10} \text{s}^{-1}$. What is the half-life of the isotope?