SPECIMEN PAPER

LEAVING CERTIFICATE EXAMINATION

MATHEMATICS - HIGHER COURSE - PAPER II - SET A

1. If α , β , γ are roots of the equation $x^3 - 3x - 4 = 0$ form the equations whose roots are (i) $\alpha - 2$, $\beta - 2$, $\gamma - 2$ and (ii) 10α , 10β , 10γ .

Show that $x^3 - 3x - 4 = 0$ has a root lying between 2·1 and 2·2 and find the value of that root, correct to 3 decimal places.

- 2. Use the Binomial Theorem to find the first 4 terms and the general term of the expansion of $(1-x)^{-\frac{1}{2}}$. Express $\sqrt[3]{10}$ in the form $(1-x)^{-\frac{1}{3}}$ and then use the expansion to find the value of $\sqrt[3]{10}$ to 3 decimal places.
 - 3. (a) State the ratio test for the convergence of a series of positive terms. ratio test to prove that the series $\sum_{n=0}^{\infty} n^2 x^n$ converges for 0 < x < 1.
 - (b) Show that the series $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots$ is convergent for all values of x.
 - 4. Investigate whether each of the following has or has not a sum to infinity.

(i)
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$$

(11)
$$\frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 4} + \frac{1}{3 \cdot 5} + \dots$$

- 5. Give a rigorous definition of Lt $f(n) = \angle$. From the definition prove that Lt $\frac{1}{n} = 0$.
- 6. Differentiate, from first principles, $\frac{1}{1-x}$ with respect to x. Differentiate with respect to x:
 - (i) $x \tan x + 2x \tan 2x$.
 - (ii) $x \sin 2x \cos^2 x$.
 - (iii) $x \sin (x^2 5)$.
 - (iv) $ln x^3$.

(Note $\ln x = \log_{e} x$).

If
$$y = (A + Bx)e^{-2x}$$
, prove that $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$.

7. Sketch the graph of $f: f(x) = \frac{x^2}{x-1}$, paying special attention to the stationary points and the asymptotes.

(Hint: Write f(x) in form $ax + b + \frac{c}{x-1}$ where a, b, c are constants).

- 8. Evaluate (i) $\int_{0}^{\frac{\pi}{2}} \sin 2\theta \cos 3\theta \, d\theta$. (ii) $\int_{0}^{\frac{\pi}{2}} x \sin x \, dx$. (iii) $\int_{0}^{1} \frac{x^{2}+1}{x^{3}+3x+4} dx$. (iv) $\int_{0}^{\frac{\pi}{4}} \sec^{4}x dx$.
- 9. Find the area enclosed by the parabola $y^2 = 3ax$ and the circle $x^2 + y^2 = 4a^2$.
- 10. (a) If $x \in \mathbb{R}$ and [x] denotes the integer k such that $k \le x < k+1$, sketch the graph of $f: x \to x [x]$, $-3 \le x \le +3$ and show that f is periodic. What is the least positive period ?
 - (b) A piece of wire 14 cm long is to be bent to form a rectangle which is not a square. Find the possible lengths of the shorter side if the diagonal of the rectangle is to be less than 5 cm long.