1. If z = x + iy $(x, y \in \mathbb{R})$, express z^2 and $\frac{1+z}{1-z}$ in the form $a + ib(a, b \in \mathbb{R})$. Find the value of x and the value of y for which

$$\frac{z+3i}{z+2} = \frac{2z+3i}{z+4} .$$

2. If $x \in \mathbb{R}$, show that $-1 < x^3 - x$ when $0 \le x \le 1$

and that $x^3-x>0$ when z>1. Deduce that $x^3-x+1=0$ has no positive root. If α , β , γ are the roots of the equation $z^3-z+1=0$, find the equations whose roots are (i) $-\alpha$, $-\beta$, $-\gamma$, (ii) $\frac{\alpha}{10}$, $\frac{\beta}{10}$, $\frac{\gamma}{10}$

- 3. (a) State which of the following statements are true and which are false (A and B are sets):
 - (i) $x \in A$ and $x \in B \implies x \in A \cup B$
 - (ii) $x \not\in A$ or $x \not\in B \implies x \not\in A \cap B$
 - (iii) $x \in A \cap B \implies x \in A \cup B$
 - (iv) $x \notin A$ and $x \notin B \implies x \notin A \cap B$

[The symbol => denotes "implies"].

- (b) If E and F are subsets of a universal set U and EUF = F, simplify each of the following: (i) E∩F, (ii) E'∪F, (iii) E∩F'.
- (c) If P and Q are non-empty subsets of T and P∩Q = P, find the set XCT which simultaneously satisfies the two equations

$$X \cup P = Q_{\bullet}$$

 $X \cap P = \phi_{\bullet}$

4. (a) If 0 < x < 1 $(x \in \mathbb{R})$, show that $\frac{1}{x} - 1 > 0$.

If $y = \frac{1}{x} - 1$, show that $x = \frac{1}{1+y}$ and that $x^n < \frac{1}{ny}(n \in \mathbb{N}, n > 0)$. If e > 0, find $k \in \mathbb{R}$ in terms of e and y for which $\frac{1}{ny} < e$ for all n > k.

Deduce that $\lim_{n\to\infty} x^n = 0$. Show also that $nx^n < \frac{2}{(n-1)y^2}$ and hence prove that the sequence

is convergent.

- (b) Prove that the series $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ converges if 0 < x < 1.
- 5. (a) Differentiate from first principles $\frac{1}{x}$ with respect to x.

 Differentiate with respect to x:

fferentiate with respect to
$$x$$
:

(1) $\frac{x^3-1}{x^3}$ (11) $x\sin(x^3-5)$ (111) $e^{(\frac{x}{\tan x})}$.

(b) If
$$y=(A+Bx)e^{-2x}$$
 (A and B independent of x), prove that
$$\frac{d^2y}{dx^2}+4\frac{dy}{dx}+4y=0.$$

If y=0 and $\frac{dy}{dx}=1$ when x=0, find the value of A and the value of B.

6. A piece of wire 20 cm. in length is cut into two pieces. One piece is bent to form a square and the other piece is bent to form a circle. If the sum of the area of the square and the area of the circle is a minimum, prove that the length of the side of the square is equal to the length of the diameter of the circle.

7. (a) Evaluate (i)
$$\int_{1}^{1} (1+x)^{3} dx$$
, (ii) $\int_{0}^{2} \sin^{2} 2x \cos x dx$, (iii) $\int_{0}^{1} x e^{1-x^{2}} dx$.

- (b) The line segment $hy=rx(0\leqslant x\leqslant h)$, h and r are constants) is rotated about the x-axis so as to generate a cone. Show that the volume of the cone is $\frac{1}{3}\pi$ r^2 h.
- 8. (a) A die is thrown three times. What is the probability of obtaining (i) a six each time (ii) a six on the third throw only ?
 - (b) A person buys a certain number of tickets so that the probability he wins a prize is 1% Assuming that the binomial distribution applies, find the least number of tickets that must be drawn if the probability of his getting a prize is greater than 80%.
- 9. If $y^2 = x(x-3)(x-8)$, find the domain of values of x for which $y \in \mathbb{R}$.

Show that the graph of $y^2 = x(x-3)(x-8)$ is symmetrical about the x-axis and find three points of the graph at which the tangents to the graph are parallel to the y-axis. Trace the graph, paying special attention to the maximum and minimum points and to the shape of the graph as x tends to infinity.

10. Plot the set of couples (ordered pairs) (x, y) which simultaneously satisfy the inequalities

$$x \ge 0$$
, $y \ge 0$, $x + 2y \le 40$, $2x + y \le 40$, $8x + 8y \le 200$.

Find the coordinates of each vertex of the set. A factory manufactures two items A and B. Three machines M_4 , M_2 , M_3 are used to manufacture each item and the number of <u>hours</u> spent by each machine on each item is given in the following table:

	M	M ₂	M ₃
A	1	2	13
В	2	1	135

No machine can work more than 40 hours per week. If the profit on each item A is £15 and on each item B is £20, find the number of each item which should be manufactured per week so as to maximise the profit, assuming that all items made are sold.