Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE EXAMINATION, 2005

MATHEMATICS - ORDINARY LEVEL

PAPER 1 (300 marks)

THURSDAY, 9 JUNE - MORNING, 9:30 to 12:00

Attempt SIX QUESTIONS (50 marks each).

WARNING: Marks will be lost if all necessary work is not clearly shown.
Answers should include the appropriate units of measurement, where relevant.

1. (a) Express 35 cm as a fraction of 1 m . Give your answer in its simplest form.
(b) (i) The approximation 50×80 was used for the calculation 51×79.

Find the percentage error, correct to one decimal place.
(ii) Express the ratio $\frac{1}{2}: \frac{1}{3}: \frac{1}{4}$ as a ratio of natural numbers.

Divide 325 in the ratio $\frac{1}{2}: \frac{1}{3}: \frac{1}{4}$.
(c) At the start of the year 2000 the population of a particular town was P. During the year 2000, the population of the town increased by 10%.
(i) Express, in terms of P, the population of the town at the end of the year 2000.
(ii) During the year 2001 the population of the town increased by 4%.

During the year 2002 the population increased by 2%.
Find the total percentage increase in the population of the town over the three years.
(iii) The actual increase in the population was 8344 . Find the value of P.
2. (a) Find the value of $x^{2}-5 x y$ when $x=3$ and $y=-2$.
(b) Solve for x and y

$$
\begin{aligned}
x+3 & =2 y \\
x y-7 y+8 & =0 .
\end{aligned}
$$

(c) (i) Write $\sqrt{x}+\frac{1}{\sqrt{x}}$ as a single fraction.
(ii) Hence, or otherwise, simplify $\left(\frac{2 \sqrt{x}}{1+x}\right)\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$.
(iii) Solve for x

$$
\left(\frac{2 \sqrt{x}}{1+x}\right)\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)=x-3
$$

3. (a) Given that $a x+b=c$, express x in terms of a, b and c, where $a \neq 0$.
(b) (i) Find A, the solution set of $3 x-2 \leq 4, \quad x \in \mathbf{Z}$.
(ii) Find B, the solution set of $\frac{1-3 x}{2}<5, \quad x \in \mathbf{Z}$.
(iii) List the elements of $A \cap B$.
(c) Let $f(x)=2 x^{3}-3 x^{2}-11 x+6$.
(i) Verify that $f(3)=0$.
(ii) Solve the equation

$$
2 x^{3}-3 x^{2}-11 x+6=0
$$

4. (a) Let $u=4-2 i$, where $i^{2}=-1$.

Plot
(i) u
(ii) $u-4$
on an Argand diagram.
(b) Let $w=1+3 i$.
(i) Express $\frac{2}{w}$ in the form $x+y i$, where $x, y \in \mathbf{R}$.
(ii) Investigate whether $|i w+w|=|i w|+|w|$.
(c) Let $z=1-2 i$.
(i) Write down \bar{z}, the complex conjugate of z.
(ii) Find the real numbers k and t such that

$$
k z+t \bar{z}=2 z^{2}
$$

5. (a) The first term of an arithmetic sequence is 9 and the second term is 13 .
(i) Find the common difference.
(ii) Find the third term.
(b) The sum of the first n terms of an arithmetic series is given by

$$
S_{n}=n^{2}+n
$$

(i) Find a, the first term.
(ii) Find S_{2}, the sum of the first two terms.
(iii) Find d, the common difference.
(iv) Write down the first five terms of the series.
(c) In a geometric sequence of positive terms, the third term is $\frac{1}{4}$ and the fifth term is $\frac{1}{16}$.
(i) Find r, the common ratio.
(ii) Find a, the first term.
(iii) How many terms of the sequence are greater than 0.01 ?
6. (a) Let $g(x)=\frac{x+5}{2}, x \in \mathbf{R}$.

Find $g(0)+g(2)$.
(b) Differentiate $3 x-x^{2}$ with respect to x from first principles.
(c) Let $f(x)=x^{2}+p x+10, x \in \mathbf{R}$, where $p \in \mathbf{Z}$.
(i) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(ii) The minimum value of $f(x)$ is at $x=3$. Find the value of p.
(iii) Find the equation of the tangent to $f(x)$ at the point $(0,10)$.
7. (a) Differentiate $9+3 x-5 x^{2}$ with respect to x.
(b) (i) Differentiate $\left(3 x^{2}-2\right)\left(x^{2}+4\right)$ with respect to x.
(ii) Given that $y=\frac{x^{2}}{x-1}$, find $\frac{d y}{d x}$ when $x=3$.
(c) A car begins to slow down at p in order to stop at a red traffic light at q.

The distance of the car from p, after t seconds, is given by

$$
s=12 t-\frac{3}{2} t^{2}
$$

where s is in metres.
(i) Find the speed of the car as it passes p.
(ii) Find the time taken to stop.
(iii) The car stops exactly at q. Find the distance from p to q.
8. Let $f(x)=\frac{1}{x-1}, \quad x \in \mathbf{R}, \quad x \neq 1$.
(i) Find $f(-3), f(-1.5), \quad f(0.5), \quad f(1.5), \quad f(5)$.
(ii) Draw the graph of the function f from $x=-3$ to $x=5$.
(iii) On the same diagram, draw the graph of the function

$$
g(x)=x+1
$$

in the domain $-2 \leq x \leq 2, x \in \mathbf{R}$.
(iv) Use your graphs to estimate the values of x for which $f(x)=g(x)$.
(v) Find, using algebra, the values of x for which $f(x)=g(x)$.

Blank Page

