AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA
LEAVING CERTIFICATE EXAMINATION, 2000
MATHEMATICS - ORDINARY LEVEL
PAPER 1 (300 marks)
THURSDAY, 8 JUNE - MORNING, 9.30 to 12.00
Attempt SIX QUESTIONS (50 marks each).
Marks may be lost if all necessary work is not clearly shown.

1. (a) Express 400 grammes as a fraction of 1 kilogramme. Give your answer in its simplest form.

(b)
$$1 \text{ euro} = IR£ 0.787564$$

 $1 \text{ euro} = DM 1.95583$

- (i) Calculate the value of IR£ 100 in euro, correct to two places of decimals.
- (ii) Hence, calculate the value of IR£100 in Deutschmarks (DM), correct to two places of decimals.
- (c) A person has annual tax free allowances of IR£7400.

The person pays income tax at the rate of 24% on the first IR£12 400 of taxable income and at the rate of 46% on the remainder.

- (i) Calculate the amount of income tax paid on the first IR£ 12 400 of taxable income.
- (ii) Calculate the person's gross income if the total annual income tax paid is IR£5138.
- 2. (a) Find the value of 5x 3y when $x = \frac{5}{2}$ and $y = \frac{2}{3}$.
 - (b) Solve for x and y x 3y = 1 $x^2 y^2 = 0.$
 - (c) Write as a power of 3
 - **(i)** 243
 - (ii) $\sqrt{27}$.

Hence, solve for x the equation

$$\sqrt{3}(3^x) = \left(\frac{243}{\sqrt{27}}\right)^2.$$

3. (a) Express p in terms of t and k when

$$tp - k = 7k$$
, $t \neq 0$.

- **(b) (i)** Show that x = 2 is a root of $3x^3 + 8x^2 33x + 10 = 0$.
 - (ii) Find the other roots of $3x^3 + 8x^2 33x + 10 = 0$.
- (c) (i) $f(x) = ax^2 + bx 8$, where a and b are real numbers. If f(1) = -9 and f(-1) = 3, find the value of a and the value of b.
 - (ii) Using your values of a and b from (i), find the two values of x for which

$$ax^2 + bx = bx^2 + ax.$$

4. (a) Simplify

$$7(2+i)+i(11+9i)$$

and express your answer in the form x + yi where $x, y \in \mathbb{R}$ and $i^2 = -1$.

- **(b)** Let w = 3 i.
 - (i) Plot w and w + 6i on an Argand diagram.
 - (ii) Calculate |w + 6i|.
 - (iii) Express $\frac{1}{w+6i}$ in the form u+vi where $u,v \in \mathbb{R}$.
- (c) Let z = 2+4i.
 - (i) Express $z^2 + 28$ in the form p + qi where $p,q \in \mathbb{R}$.
 - (ii) Solve for real k

$$k(z^2 + 28) = |z|(1+i)$$
.

Express your answer in the form $\frac{\sqrt{a}}{b}$ where $a,b \in \mathbb{N}$ and a is a prime number.

5. (a) The *n*th term of a sequence is given by $T_n = n^2 + 1$.

(i) Write down the first three terms of the sequence.

(ii) Show that $T_1 + T_2 + T_3 = T_4$.

(b) The first term of a geometric series is 1 and the common ratio is $\frac{11}{10}$.

(i) Write down the second, third and fourth terms of the series.

(ii) Calculate S_4 , the sum of the first four terms. Give your answer as a decimal.

(c) The first three terms of an arithmetic series are $5 + 10 + 15 + \dots$

(i) Find, in terms of n, an expression for T_n , the nth term.

(ii) Find, in terms of n, an expression for S_n , the sum to n terms.

(iii) Using your expression for S_n , find the sum of the natural numbers that are both multiples of 5 and smaller than 1000.

6. (a) Differentiate 7x + 3 from first principles with respect to x.

(b)

The graph shows portion of a periodic function $f:x \to f(x)$ which is defined for $x \in \mathbf{R}$.

(i) Write down the period and the range of f(x).

(ii) Complete the following table:

х	2	8	14	20	26
f(x)					

(c) Let $g(x) = (2x+3)(x^2-1)$ for $x \in \mathbb{R}$.

(i) For what two values of x is the slope of the tangent to the curve of g(x) equal to 10?

(ii) Find the equations of the two tangents to the curve of g(x) which have slope 10.

- 7. (a) Differentiate with respect to x
 - (i) $4x^2 + 5$
 - (ii) $9x x^3$.
 - **(b) (i)** Find $\frac{dy}{dx}$ when $y = \frac{2x-7}{x-1}$, $x \ne 1$.
 - (ii) Find $\frac{dy}{dx}$ when $y = (x^2 + 5x 1)^3$.
 - (c) A car, starting at t = 0 seconds, travels a distance of s metres in t seconds where $s = 30t \frac{9}{4}t^2$.
 - (i) Find the speed of the car after 2 seconds.
 - (ii) After how many seconds is the speed of the car equal to zero?
 - (iii) Find the distance travelled by the car up to the time its speed is zero.
- **8.** (a) Let p(x) = 3x 12.

For what values of x is p(x) < 0 where x is a positive whole number?

(b) (i) Draw the graph of

$$g(x) = \frac{1}{x}$$
 for $-3 \le x \le 3$, $x \in \mathbb{R}$ and $x \ne 0$.

(ii) Using the same axes and the same scales, draw the graph of

$$h(x) = x + 1$$
 for $-3 \le x \le 3$, $x \in \mathbb{R}$.

(iii) Use your graphs to estimate the values of x for which

$$\frac{1}{x} = x + 1.$$

- (c) Let $f(x) = x^3 3x^2 + ax + 1$ for all $x \in \mathbf{R}$ and for $a \in \mathbf{R}$.
 - f(x) has a turning point (a local maximum or a local minimum) at x = -1.
 - (i) Find the value of a.
 - (ii) Is this turning point a local maximum or a local minimum? Give a reason for your answer.
 - (iii) Find the co-ordinates of the other turning point of f(x).