AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

LEAVING CERTIFICATE EXAMINATION, 2000

MATHEMATICS - ORDINARY LEVEL

PAPER 1 (300 marks)

THURSDAY, 8 JUNE - MORNING, 9.30 to 12.00

Attempt SIX QUESTIONS (50 marks each).

Marks may be lost if all necessary work is not clearly shown.

1. (a) Express 400 grammes as a fraction of 1 kilogramme. Give your answer in its simplest form.
(b)

$$
\begin{aligned}
& 1 \text { euro }=\text { IR£ } 0.787564 \\
& 1 \text { euro }=\text { DM } 1.95583
\end{aligned}
$$

(i) Calculate the value of IR£ 100 in euro, correct to two places of decimals.
(ii) Hence, calculate the value of IR£ 100 in Deutschmarks (DM), correct to two places of decimals.
(c) A person has annual tax free allowances of IR£ 7400 .

The person pays income tax at the rate of 24% on the first IR£ 12400 of taxable income and at the rate of 46% on the remainder.
(i) Calculate the amount of income tax paid on the first IR£ 12400 of taxable income.
(ii) Calculate the person's gross income if the total annual income tax paid is IR£5138.
2. (a) Find the value of $5 x-3 y$ when $x=\frac{5}{2}$ and $y=\frac{2}{3}$.
(b) Solve for x and y

$$
\begin{aligned}
& x-3 y=1 \\
& x^{2}-y^{2}=0 .
\end{aligned}
$$

(c) Write as a power of 3
(i) 243
(ii) $\sqrt{27}$.

Hence, solve for x the equation

$$
\sqrt{3}\left(3^{x}\right)=\left(\frac{243}{\sqrt{27}}\right)^{2} .
$$

3. (a) Express p in terms of t and k when

$$
t p-k=7 k, \quad t \neq 0 .
$$

(b) (i) Show that $x=2$ is a root of $3 x^{3}+8 x^{2}-33 x+10=0$.
(ii) Find the other roots of $3 x^{3}+8 x^{2}-33 x+10=0$.
(c) (i) $\quad f(x)=a x^{2}+b x-8$, where a and b are real numbers.

If $f(1)=-9$ and $f(-1)=3$, find the value of a and the value of b.
(ii) Using your values of a and b from (i), find the two values of x for which

$$
a x^{2}+b x=b x^{2}+a x .
$$

4. (a) Simplify

$$
7(2+i)+i(11+9 i)
$$

and express your answer in the form $x+y i$ where $x, y \in \mathbf{R}$ and $i^{2}=-1$.
(b) Let $w=3-i$.
(i) Plot w and $w+6 i$ on an Argand diagram.
(ii) Calculate $|w+6 i|$.
(iii) Express $\frac{1}{w+6 i}$ in the form $u+v i$ where $u, v \in \mathbf{R}$.
(c) Let $z=2+4 i$.
(i) Express $z^{2}+28$ in the form $p+q i$ where $p, q \in \mathbf{R}$.
(ii) Solve for real k

$$
k\left(z^{2}+28\right)=|z|(1+i) .
$$

Express your answer in the form $\frac{\sqrt{a}}{b}$ where $a, b \in \mathbf{N}$ and a is a prime number.
5. (a) The nth term of a sequence is given by $\mathrm{T}_{n}=n^{2}+1$.
(i) Write down the first three terms of the sequence.
(ii) Show that $T_{1}+T_{2}+T_{3}=T_{4}$.
(b) The first term of a geometric series is 1 and the common ratio is $\frac{11}{10}$.
(i) Write down the second, third and fourth terms of the series.
(ii) Calculate S_{4}, the sum of the first four terms. Give your answer as a decimal.
(c) The first three terms of an arithmetic series are $5+10+15+$ \qquad
(i) Find, in terms of n, an expression for T_{n}, the nth term.
(ii) Find, in terms of n, an expression for S_{n}, the sum to n terms.
(iii) Using your expression for S_{n}, find the sum of the natural numbers that are both multiples of 5 and smaller than 1000 .
6. (a) Differentiate $7 x+3$ from first principles with respect to x.
(b)

The graph shows portion of a periodic function $f: x \rightarrow f(x)$ which is defined for $x \in \mathbf{R}$.
(i) Write down the period and the range of $f(x)$.
(ii) Complete the following table:

x	2	8	14	20	26
$f(x)$					

(c) Let $g(x)=(2 x+3)\left(x^{2}-1\right)$ for $x \in \mathbf{R}$.
(i) For what two values of x is the slope of the tangent to the curve of $g(x)$ equal to 10 ?
(ii) Find the equations of the two tangents to the curve of $g(x)$ which have slope 10 .
7. (a) Differentiate with respect to x
(i) $4 x^{2}+5$
(ii) $9 x-x^{3}$.
(b) (i) Find $\frac{d y}{d x}$ when $y=\frac{2 x-7}{x-1}, x \neq 1$.
(ii) Find $\frac{d y}{d x}$ when $y=\left(x^{2}+5 x-1\right)^{3}$.
(c) A car, starting at $t=0$ seconds, travels a distance of s metres in t seconds where

$$
s=30 t-\frac{9}{4} t^{2} .
$$

(i) Find the speed of the car after 2 seconds.
(ii) After how many seconds is the speed of the car equal to zero?
(iii) Find the distance travelled by the car up to the time its speed is zero.
8. (a) Let $p(x)=3 x-12$.

For what values of x is $p(x)<0$ where x is a positive whole number?
(b) (i) Draw the graph of

$$
g(x)=\frac{1}{x} \quad \text { for }-3 \leq x \leq 3, x \in \mathbf{R} \text { and } x \neq 0 .
$$

(ii) Using the same axes and the same scales, draw the graph of

$$
h(x)=x+1 \quad \text { for }-3 \leq x \leq 3, x \in \mathbf{R} .
$$

(iii) Use your graphs to estimate the values of x for which

$$
\frac{1}{x}=x+1 .
$$

(c) Let $f(x)=x^{3}-3 x^{2}+a x+1$ for all $x \in \mathbf{R}$ and for $a \in \mathbf{R}$.
$f(x)$ has a turning point (a local maximum or a local minimum) at $x=-1$.
(i) Find the value of a.
(ii) Is this turning point a local maximum or a local minimum? Give a reason for your answer.
(iii) Find the co-ordinates of the other turning point of $f(x)$.

