M.47

AN ROINN OIDEACHAIS LEAVING CERTIFICATE EXAMINATION, 1991

MATHEMATICS - ORDINARY LEVEL - PAPER I (300 marks)

THURSDAY, 6 JUNE - MORNING, 9.30 - 12.00

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each)

Marks may be lost if all your work is not clearly shown

or if you do not indicate where a calculator has been used.

1. (i) A disc, centre c, radius 7 cm has a quarter sector removed.

Calculate the length of the perimeter taking $\pi = \frac{22}{7}$.

- (ii) If $\frac{r}{\nu} + \frac{r}{k} = p$, express r in terms of p, ν and k.
- (iii) In the triangle abc, |ab| = |ac| = 15 cm. g is the point of intersection of the medians (centroid). |ag| = 8 cm. Calculate |bc|.

(iv) In the diagram |ab| = 8 cm, |bc| = 6 cm, and |ad| = 7 cm. Calculate |df|.

- (v) The distance between points (t, -1) and (2, 2) is 5. Find two values for t.
- (vi) Find the equation of the line containing (3, -4) and parallel to 2x 5y = 10.
- (vii) S is the circle $x^2 + y^2 = 16$. Write the equation of the circle centre (0, 0) which has an area four times that of S.

- 1 (contd.) (viii) For what value of θ , $0^{\circ} < \theta < 90^{\circ}$ is $2 \sin \theta \cos \theta = \sin \theta$?
 - (ix) The area of the isosceles triangle pqr is 6.632 cm^2 .

 Calculate |pr|. (Tables P.17).

- (x) $\overrightarrow{v} = 7\overrightarrow{i} 7\overrightarrow{j}$, $\overrightarrow{uv} = 3\overrightarrow{i} + 4\overrightarrow{j}$. Find \overrightarrow{u} in terms of \overrightarrow{i} and \overrightarrow{j} .
- 2. A cone has the upper part removed by a cut which is parallel to the base.

 Dimensions of the cone and the remainder are shown.

Find, in terms of π (i.e. not giving π a value)

- (i) the volume of each cone
- (ii) R, the volume of the remainder.

A water container is formed by fixing an open cylinder to the remainder. The water container has a capacity $\frac{3}{2}$ R Find the height of the cylinder.

- 3. (i) Prove that the areas of two triangles of equal height are proportional to the lengths of their bases.
 - (ii) Hence, or otherwise, prove that a diagonal bisects the area of a parallelogram.
 - (iii) Assuming the diagonals of a parallelogram bisect one another, prove that the diagonals divide the parallelogram pqrs into four triangles of equal area.

4. (a) Prove that the medians of a triangle are concurrent.

(b) In the triangle shown, $|\angle bca| = |\angle cdb| = 90^{\circ}$ Prove the triangles, bcd, bca are equiangular.

Calculate |cd| if |ab| = 5 and |bc| = 4.

5. H is the line 3x + 2y - 4 = 0. Verify that c(2, -1) is in H.

Points a(-5, 1) and b(1, 9) are in L. Find

- (i) the equation of L.
- (ii) the coordinates of d, the point of intersection of H and L.
- (iii) the coordinates of the fourth point m of the parallelogram dacm.
- (iv) the area of dacm.
- 6. Write down the length of the radius of the circle

$$S_1: x^2 + y^2 = 20.$$

T: x - 2y + 10 = 0 is the equation of a tangent to S_1 . Find the coordinates of the point of contact.

 S_2 is the image of S_1 under an axial symmetry in T. Write the equation of S_2 .

Find the coordinates of p and q, points in which S_2 intersects the Y axis.

 S_3 is a circle through p and q with centre (6, 8) Find the equation of S_3 .

- 7. (a) A ball at p is 27 m from the nearer goalpost.
 - (i) Calculate its distance from the farther goalpost, to the nearest metre.
 - (ii) Find |Lrpq|.
 - (b) Sketch the graph of $\cos 2x$ in the domain $0 \le x \le \pi$. Use the graph to estimate the values of x for which $\cos 2x = 0.7$.

8. (a) opqr is a parallelogram with o the origin. Copy the diagram and plot the points k_1 , k_2 , k_3 such that $\overrightarrow{k_1} = \overrightarrow{p} + \overrightarrow{q}$ $\overrightarrow{k_2} = \overrightarrow{p} + \frac{1}{2}\overrightarrow{r}$ $\overrightarrow{k_3} = \frac{1}{2}\overrightarrow{p} + \overrightarrow{r}$ Express $\overrightarrow{k_2} \overrightarrow{k_3}$ in terms of \overrightarrow{p} and \overrightarrow{r} .

(b) $\overrightarrow{m} = 5\overrightarrow{i} - 6\overrightarrow{j}$, $\overrightarrow{n} = -10\overrightarrow{i} + 2\overrightarrow{j}$. Find \overrightarrow{mn} in terms of \overrightarrow{i} and \overrightarrow{j} . If $\overrightarrow{m} + \frac{1}{2}\overrightarrow{mt} = \overrightarrow{n}$, find \overrightarrow{t} in terms of \overrightarrow{i} and \overrightarrow{j} .