AN ROINN OIDEACHAIS

LEAVING CERTIFICATE EXAMINATION, 1988

MATHEMATICS - ORDINARY LEVEL - PAPER I (300 marks)

THURSDAY, 9 JUNE - MORNING, 9.30 - 12.00

Attempt Question 1 (100 marks) and four other questions (50 marks each)

Marks may be lost if all your work is not clearly shown or if you do not indicate where a calculator has been used.

1. (i) Calculate the length of the perimeter of the track if |pq| = 80 m and the radius of each semicircular end is 40 m. [Take $\pi = 3$].

- (ii) If $x = \frac{y(t-y)}{z}$, express t in terms of x, y and z.
- (iii) The area of the triangle pqr is 40 and |qs|: |sr| = 2: 3. Calculate the area of the triangle pqs.

(iv) pq and rs intersect in t and $|\angle prt| = |\angle tsq| = 90^{\circ}$. If |pr| = 3, |sq| = 6 and |pq| = 15 calculate |rs|.

(v) pqr and pqs are two right-angled triangles. If qr intersects ps at t, give a reason for saying |qt|. |tr| = |pt|. |ts|.

- (vi) t is the mid-point of [xy]. The co-ordinates of x and t are (-4, 2) and (1, -3) respectively. How far is y from the origin?
- (vii) The X-axis is a tangent to the circle, centre (-2, 5). Write down the equation of the circle.
- (viii) Write down the co-ordinates of the image of (0, 4) under the projection, parallel to the X-axis, on the line x = 2.
- (ix) The length of the radius of the quadrant of the circle, centre c, is 100 m. If $|\angle tcr| = 52^{\circ}$ and $mr \parallel ct$, calculate |mr|, correct to one place of decimals.

(x) In the parallelogram pqrs,

$$\vec{p} = -3\vec{i} + \vec{j}$$

$$\vec{q} = 5\vec{i} - 2\vec{j}$$

$$\vec{r} = 4\vec{i} + 2\vec{j}$$

find \vec{s} in terms of \vec{i} and \vec{j} .

2. (a) The diagram shows two solid concrete steps, 0.25 m high and 0.25 m deep.

Other dimensions are shown.

If all the angles are right angles, calculate the volume of concrete needed.

If concrete costs IR£40.00 per 1 m^3 , find the cost of the concrete in the steps.

(b) Water flows through a cylindrical pipe of internal radius 1.25 cm at a speed of 50 cm per second.

For how many seconds does water flow so as to deliver 31.4 litres. [Take $\pi = 3.14$].

If turning a tap has the effect of halving the internal radius, how long must water flow to deliver 31.4 litres, assuming the same value of π and the same speed of flow?

- 3. (i) Prove that the measure of the angle at the centre of a circle is twice the measure of an angle at the circle standing on the same arc.
 - (ii) In the circle, centre c, $|\angle y cx| = |\angle t cy|$. Prove |xy| = |yt|, where these are chords of the circle.

(iii) If points p and q are 5 cm apart, construct the locus (set of positions) of a point k so that $|\angle pkq| = 60^{\circ}$.

4. (a) (i)
$$[ab]$$
 and $[cd]$ are two chords of a circle. If ab , cd intersect at k , prove
$$|ak| \cdot |kb| = |ck| \cdot |kd|.$$

(ii) In the triangle
$$pqr$$
, $|\angle rpq| = 90^{\circ}$ and $ps \perp qr$. Prove $|pq|^2 + |pr|^2 = |qr|^2$.

- (b) kmnp is a square of side 6 units. |nt| = 2. Calculate
 - (i) |kt|
 - (ii) the area of $\triangle ktm$
 - (iii) the distance of m from kt.

- 5. K is the line 3x 2y + 6 = 0.
 - (i) Verify that $(0, 3) \in K$.
 - (ii) Find the equation of the line L through q(3, 1) parallel to K.
 - (iii) Write down the co-ordinates of the vertices of the parallelogram formed by the four lines: K, L, the Y-axis and the line through q parallel to the Y-axis.
 - (iv) Calculate the area of this parallelogram.

- 6. (i) Calculate the co-ordinates of the point(s) of intersection of the circle $C: x^2 + y^2 = 50$ and the line y = 7x + 50.
 - (ii) If K is the images of C under the translation $(1, 1) \rightarrow (-6, 2)$ find the equation of K.

If L is the axis of symmetry through the origin of $C \cup K$, write down the equation of the image of K under

$$S_X \circ S_L$$
,

where S_X is the axial symmetry in X-axis.

7. (a) If |bd| = |dc| and |ad| = 8 (see diagram) also $| \angle abd | = 60^{\circ}$, $| \angle bda | = 70^{\circ}$ calculate, correct to the nearest integer (i) |bd|.

Use this answer to find

(b) Fill in the blanks in the table

X	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
2 <i>x</i>					
sin 2x					

Draw the graph of $f: x \to \sin 2x$ in the domain $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, $x \in \mathbb{R}$.

Show on the graph how to estimate the values of x for which

$$0.3 - \sin 2x = 0$$

in the domain.

- 8. (a) If $\vec{u} = 6\vec{i} 8\vec{j}$ and $\vec{v} = \vec{i} + 4\vec{j}$ calculate $|\vec{u}\vec{v}|$. If $5\vec{i} - 12\vec{j} = m\vec{u} + n\vec{v}$, find the value of m and the value of n, when m and n are scalars.
 - (b) opqr is a parallelogram, o is the origin. Copy the diagram and show k_1 , where $\vec{k_1} = \frac{1}{3}\vec{r} + \frac{1}{2}\vec{p}$.

If x divides [pq] in the ratio 2.1 (see diagram) and y is the mid-point of [qr], express in terms of \overrightarrow{p} and \overrightarrow{r}

$$\overrightarrow{x}$$
, \overrightarrow{y} and $\overrightarrow{x}\overrightarrow{y}$.

On the diagram, show k_2 , where

$$\vec{k_2} = \vec{xy}$$
.

Express $\vec{k_1} - \vec{k_2}$ in terms of \vec{p} .

