LEAVING CERTIFICATE EXAMINATION, 1987

MATHEMATICS - ORDINARY LEVEL - PAPER I (300 marks)

THURSDAY, 11 JUNE - MORNING, 9.30 - 12.00

Attemp Question 1 (100 marks) and four other questions (50 marks each)

Marks may be lost if all your work is not clearly shown or if you do not indicate where a calculator has been used

. (i) Calculate the area of the smaller square in the diagram. The lengths 4 and 1 are shown.

- (ii) Express s in terms of p, q and r when $p = q \left(1 + \frac{r}{s}\right).$
- (iii) IR£1 is equivalent to 96p sterling. What is the equivalent in IR£ of £384.00 sterling?
- (iv) |bc| = k, see diagram. Express |ab| in terms of k.

(v) Find the length of the tangent [kt] if $|ka| = \frac{1}{2}|kt|$ and |ab| = 12.

(vi) In the triangle pqr, [mn] is drawn so that $|\angle pqr| = |\angle mnp|$.

Prove $|\angle pmn| = |\angle qrp|$ and hence

Calculate |nr|.

- (vii) K is a line through the origin. Under the axial symmetry in K, (6, -2) is the image of (2, 6). Find the equation of K.
- (viii) (-1, -1) is a point of the circle $(x 2)^2 + (y k)^2 = 25$, where k > 0. Calculate the value of k.
- (ix) Find the equation of the image of the line x y + 2 = 0 under the translation $(0, 0) \rightarrow (0, -2)$.
- (x) If $a\vec{i} b\vec{j} + b\vec{i} + a\vec{j} = 7\vec{i} \vec{j}$, find the value of a and the value of b.

2. A container, A, see diagram is first filled to the top with liquid which can flow through the cone's vertex.

When the level of water is 8 cm lower than it was initially the bowl is full.

Calculate the diameter of the bowl.

A then contains 18 cm^3 of liquid, as shown. Find the height of liquid in the cylindrical part correct to one place of decimals. [Take $\pi = 3$.]

3. Prove that the bisectors of the angles of a triangle pqr are concurrent.

In the triangle xyz, the bisectors of the angles $\angle xyz$, $\angle yzx$, $\angle zxy$ meet at the incentre c, and a circle, centre c, is inscribed in the triangle.

Prove that the area of the triangle xyz is $\frac{1}{2}r(|xy| + |yz| + |zx|)$ where r is the length of the radius of the circle.

If |xy| = 9, |xz| = 12 and $|\angle yxz| = 90^{\circ}$, calculate the value of r.

4. (a) [ab] and [cd] are two chords of a circle. If the lines ab, cd intersect in k, then prove

$$|ak| \cdot |kb| = |ck| \cdot |kd|$$

(b) In the triangle xyz, h_1 and h_2 are the lengths of the perpendiculars, respectively from x and p to [yz]. Also $pq \perp xy$.

If
$$h_1: h_2 = 3: 2$$
 and $|xy| = |yz|$, find the value of the ratio $|pq|: |pr|$.

5. M is the line x - 2y + 6 = 0. Verify that the point (4, 5) is in M.

Calculate the coordinates of q, the point of M which is in the X-axis.

The line K contains the point r(2, -1) and $K \perp M$. Find the equation of K.

 $K \cap M = \{s\}$. Find the coordinates of s without using graphs.

The area of the triangle qrs is equal to the area of the triangle formed by joining q, r and the point (4, k) where k > 0. Calculate the value of k.

6. K_1 is the circle $x^2 + y^2 = 25$.

Write down the coordinates of the centre and the length of the radius.

Verify that the point p(-3, 4) is a point of the circle K_1 .

Find the equation of the tangent to K_1 at p.

 K_2 is the image of K_1 under the translation $(1, 1) \rightarrow (-2, 5)$. Write the equation of K_2 .

 K_3 is a circle, the centre of which is midway between p and the origin and which touches K_1 at one point only. Write an equation for K_3 .

7. (a) In the triangle pqr, see diagram, |pq| = 5, |rs| = 11, $|\angle pqr| = 64^{\circ}9'$, $|\angle qsp| = 30^{\circ}$. Calculate |ps| and |pr|.

(b) Sketch the graph of

$$f: x \to \cos x$$

in the domain $0 \le x \le 2\pi$, $x \in \mathbb{R}$.

If the period of $\cos x$ is 2π , estimate from your graph the value of

- (i) $\cos \frac{31\pi}{5}$
- (ii) $2\cos\left(16\pi \frac{\pi}{6}\right)$.

8. (a) p, q, r are points and o is the origin.

Copy the diagram each time and identify on separate diagrams the points $k_1,\ k_2$ where

(b) oxyz is a parallelogram and o is the origin.

$$|sy| = \frac{1}{3}|yz|$$
 and $|tx| = \frac{1}{3}|xy|$.

Find $|\vec{st}|$ to the nearest unit if

$$\overrightarrow{x} = 4\overrightarrow{i} + 3\overrightarrow{j}$$
 $\overrightarrow{z} = -5\overrightarrow{i}$

