LEAVING CERTIFICATE EXAMINATION, 1986

MATHEMATICS - ORDINARY LEVEL - PAPER I (300 marks)

THURSDAY, 12 JUNE - MORNING, 9.30 - 12.00

Attempt Question 1 (100 marks) and four other questions (50 marks each)

Marks may be lost if all your work is not clearly shown or if you do not indicate where a calculator has been used

1. (i) Calculate the area of the shaded portion of the rectangle in the diagram.

- (ii) Express t in terms of x and y if $x y = \frac{t + x}{t}$.
- (iii) The lengths of the sides of a triangle are 5, 5 and 8. The medians intersect in k. Calculate |pk|.

(iv) In the diagram, $ts \parallel pr$. Prove that areas of the two triangles tpo, rso are equal.

(v) pqr and stw are two triangles, $|\angle prq| = |\angle swt| = 90^{\circ}$, and $|\angle pqr| = |\angle stw|$. Calculate |ts|.

- (vi) If p = (6, 7), q = (7, 6), calculate |pq|.
- (vii) The equation of a circle is $x^2 6x + 9 + y^2 10y + 25 = 1.$ Find the coordinates of its centre.
- (viii) Find the equation of the image of the line x y = 0, under the translation

$$(0, 0) \rightarrow (0, -1).$$

(ix) $\sin(x + 4\pi) = 0.75$. Find the value of $\sin x$.

(x)
$$oabc$$
 is a parallelogram, where o is the origin.

$$\vec{a}' = k\vec{i}' + \vec{j}'$$

$$\vec{b} = 6\vec{i} + t\vec{j}'$$

$$\vec{c} = 2\vec{i}' + 5\vec{j}'$$

Find the value of k and the value of t.

OVER→

2. (i) Calculate, in terms of π , the volume of a sphere of radius 3 cm.

Three such identical spheres fit exactly into a closed cylindrical container. Calculate the internal volume of the container correct to the nearest cm³ taking π to be 3·14.

(ii) An equiangular triangular frame holds 15 such spheres arranged as in the diagram.

Calculate |pq| and |rs|, leaving the latter in surd form,

3. Prove that the measure of the angle at the centre of a circle is twice the measure of an angle at the circle standing on the same arc.

r is a point of a circle, centre c, $|\angle cpq| = 40^{\circ}$.

Calculate (i) |Lpcq|

(ii) |Lprq|.

If $|\angle pcr| = 200^{\circ}$, see diagram, calculate $|\angle crp|$.

4. (i) If the angles of the two triangles pqr and stw are equal in measure, prove the lengths of their corresponding sides are proportional.

(ii) abcd is a quadrilateral, $ab \parallel dc$. A line xy is drawn parallel to ab. Prove |xa| : |ad| = |yb| : |bc|. [a construction line $dn \parallel cb$ is shown.]

(iii) abcd is the quadrilateral of (ii). The diagonals [ac], [db] intersect in t, through which a line $xy \parallel ab$ is drawn. Prove

|xt| = |ty|.

5. p(0, 1), q(5, 6), r(2, 7) are three points. Verify that $pr \perp rq$.

Calculate the area of the triangle pqr.

Calculate the coordinates of w, the image of q under the central symmetry in r, and verify that |qr| = |rw|.

Find the equation of pw.

- K_1 is the circle $x^2 + y^2 = 9$.
 - (i) Write down the length of the radius of K_1 .
 - (ii) Calculate the coordinates of the points common to K_1 and the line x-2y+3=0.

Write down the equation(s) of

- (iii) K_2 , the image of K_1 under the translation $(1, 0) \rightarrow (10, 0)$.
- (iv) K_3 and K_4 , two of the circles which touch each of K_1 and K_2 and which have their centres on the x-axis.
- (a) In the triangle pqr, |pq| = 8, |qr| = 4, |rp| = 5. Calculate |Lqrp| and round off to the nearest degree.
 - (b) Using the same axes and scales, sketch the graph of
 - (i) $x \rightarrow \sin x$
 - (ii) $x \rightarrow \cos x$,

in the domain $0 \le x \le 2\pi$, $x \in \mathbb{R}$.

Assuming 2π is the period of both $\sin x$ and $\cos x$, show their graphs in $-2\pi \leqslant x \leqslant 0.$

Estimate

- (iii) $\sin(\frac{\pi}{4} 2\pi)$
- (iv) $\cos(\frac{\pi}{4} 2\pi)$
- $(v) \sin(\frac{\pi}{2} 2\pi).$
- (a) o, p, q are points, o is the origin. Using separate diagrams, show points k_1 , k_2 , such that

(i)
$$\overrightarrow{ok_1} = \overrightarrow{p} + \overrightarrow{q}$$

(ii) $\overrightarrow{ok_2} = \overrightarrow{p} - \overrightarrow{q}$

(ii)
$$\overrightarrow{ok_2} = \overrightarrow{p} - \overrightarrow{q}$$

(b) pqr is a triangle and o is the origin. |ps| = |sq|. Express

(i)
$$\overrightarrow{os}$$
 in terms of \overrightarrow{p} and \overrightarrow{q}

(ii)
$$\overrightarrow{rs}$$
 in terms of \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r}

(iii)
$$\overrightarrow{og}$$
 in terms of \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} , given that $|sg| = \frac{1}{3} |sr|$.

If
$$\vec{p} = -2\vec{i} + 3\vec{j}$$

 $\vec{q} = 7\vec{i} + 3\vec{j}$
 $\vec{r} = \vec{i} + 9\vec{j}$

express \vec{g} in terms of \vec{i} and \vec{j} .

