LEAVING CERTIFICATE EXAMINATION, 1985

MATHEMATICS - ORDINARY LEVEL - PAPER II (300 marks)

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each)

Marks may be lost if all your work is not clearly shown

- 1. (i) When the exchange rate is $IR£1 = 10 \, Kroner$ a person changes IR£150 into Kroner. A charge is made for this service. What is this percentage charge if the person gets $1470 \, Kroner$?
 - (ii) Express

$$\frac{1.4 \times 10^{3} + 5.6 \times 10^{2}}{7 \times 10^{-1}}$$

in the form $a \cdot 10^n$, where $1 \le a < 10$ and $n \in \mathbb{Z}$.

(iii) Factorise:

$$(x + 2y)^2 + x^2 - 4y^2$$
.

(iv) If x = 2 is a root of

$$2x^3 + x^2 - 13x + 6 = 0$$

find the other two roots.

(v) Express the product

$$4^{\frac{1}{2}}$$
 $8^{-\frac{2}{3}}$

in the form 2^k .

(vi) $f = \{(a, b), (b, c), (,)\}$ $g = \{(k, a), (k, b), (k, c)\}$

If $f \circ g = g$, what other couple should be be included in f?

- (vii) The lengths of the three sides of a right angled triangle are in arithmetic sequence. Find one set of suitable lengths.
- (viii) Calculate the standard deviation of the set

$$\{-1, 0, 2, 3\}.$$

(ix) The function f is defined as:

$$f: \mathbf{R} \to \mathbf{R}: x \to 3x - 7.$$

If f(2) = k f(-2), find k.

(x) Find the coordinates of the point on the curve

$$y = x^2 - x - 6$$

at which the tangent to the curve has a slope of -1.

2. Let $z_1 = 2 - 3i$ and $z_2 = -1 + 4i$, where $i = \sqrt{-1}$.

Plot z_1 and z_2 on the Argand diagram and prove that z_1 is nearer than z_2 to the origin.

Verify that
$$\frac{|z_1|}{|z_2|} = \left| \frac{z_1}{z_2} \right|$$
.

 z_3 is the image of z_2 under the central symmetry in the origin. Express z_3 in the form a + bi and plot it.

If
$$z_1 - \alpha(z_3 - z_1) = k$$
, where $\alpha, k \in \mathbb{R}$, find α and k .

3. (a) Two supermarkets, S_1 and S_2 , made reductions in the prices of the four items A, B, C, D as shown in the table:

	A	В	C	D
S_1	10p	3p	5p	20p
S_2	8p	4p	3p	21p

Which supermarket had the best average reduction per item ?

If the sales of the four items A, B, C, D in each supermarket were in the ratio 2:4:1:3, respectively, which, now, had the best average reduction?

(b) The following table gives the number of people who watched television for a period of time on a certain day:

Viewing Time (minutes)	0 - 60	60 - 120	120 - 180	180 - 240
No. of People	130	480	300	90

(Note: 0 - 60 means 0 is included but 60 is not etc.)

Taking the viewing time at the mid-interval value, calculate the mean viewing time per person.

Explain what is meant by the "median" viewing time.

Use a cumulative frequency curve (based on < 60, < 120, < 180, < 240) to estimate the median viewing time.

4. The function

$$f: x \to 2x^3 - 5x^2 - 2x + 5$$

is defined on the domain $-2 \le x \le 3$ for $x \in \mathbb{R}$.

Verify that

$$f(-2) = -27$$
 and $f(-1) = 0$

and draw the graph of the function.

Use your graph to estimate

- (i) the value of f(1.75)
- (ii) the roots of the equation f(x) + 20 = 0
- (iii) the set of values of x for which $2x^3 \ge 5x^2 + 2x$.

5. (a) Solve the simultaneous equations:

$$\frac{1}{x} = 2$$

$$y(3 - 2x) - 6 = 0$$

$$4x - y - 3z = 1.$$

(b) Show that $\binom{7}{3} = \binom{7}{4}$.

When $(1 - 5x)^7$ is expanded, find

- (i) the coefficient of x^3
- (ii) the value of 5th term when $x = \frac{1}{5}$.

6. (a) The sum, S_n , of the first n terms of an arithmetic series is given by $S_n = 3n^2 - 6n.$

Calculate S_2 and S_1 and find T_2 , the 2nd term of the series.

If $T_n = a + (n - 1)d$, find the value of "a" and the value of "d" and say which term of the series is 333.

(b) A person invested IR£1000 at 15% per annum. At the end of the first year the person withdrew IR£500.

During the 2nd year the rate of interest was 12% per annum. At the end of the 2nd year the person withdrew a certain amount.

During the 3rd year the interest was 10% per annum. At the end of the 3rd year the person's investment was then worth 55% of the initial investment.

How much was withdrawn at the end of the 2nd year?

7. A ship has space for at most 200 containers which are of two types — refrigerated and unrefrigerated. Each refrigerated container carries a load of 3 tonnes and each unrefrigerated container carries a load of 8 tonnes. The maximum load the ship can carry is 1200 tonnes. Freight charges on each refrigerated container are IR£100 and on each unrefrigerated container IR£80.

Graph the set showing the possible numbers of each type of container that the ship can carry.

If operating costs on each journey amount to IR£14000, indicate by the letter K that region of your graph where the ship is not operating at a loss.

Calculate the maximum profit if a ready supply of each container is available.

8. (a) Differentiate from first principles

$$x - x^2$$

with respect to x.

- (b) (i) If $y = \frac{x}{1-x^2}$, show that $\frac{dy}{dx} > 0$ for all $x \in \mathbb{R}$.
 - (ii) Find the value of $\frac{dy}{dx}$ at x = -1 when $y = (2x^2 3)^7$.
- (c) Draw a rough graph of a function y = f(x) which satisfies the following conditions at the same time

$$y = 0 \quad \text{at} \quad x = 0$$

$$\frac{dy}{dx} = 0 \quad \text{at} \quad x = 0$$

$$\frac{dy}{dx} = 1 \quad \text{at} \quad x = 1$$

$$\frac{dy}{dx} = 0 \quad \text{at} \quad x = 2$$

$$\frac{dy}{dx} > 0 \quad \text{for} \quad 0 < x < 2.$$