MATHEMATICS - ORDINARY LEVEL - PAPER I (300 marks)

FRIDAY, 8 JUNE - MORNING, 9.45 - 12.15

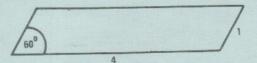
Attempt Question 1 (100 marks) and four other questions (50 marks each)

Marks may be lost if all your work is not clearly shown.

- 1. (i) 1010 pages of a telephone directory together have a thickness of 3.5 cm. Calculate the thickness of a single page in cm correct to three decimal places.
 - (ii) Express q in terms of p, h, k when

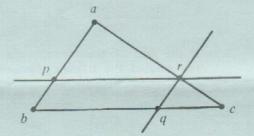
$$\frac{q}{p+q} = \frac{h+k}{h}$$

- (iii) If IR£1 is worth 78p sterling, find the IR£ value of £39 sterling.
- (iv) Calculate the area of the parallelogram.



(v) In the $\triangle abc$, $pr \parallel bc$, $rq \parallel ab$. If |ap| : |pb| = 2 : 1, state the value of each of the following ratios

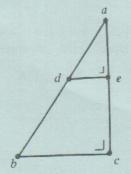
and
$$|ar|$$
 : $|rc|$ $|bc|$: $|qc|$.



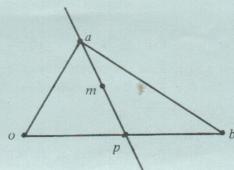
(vi) abc, ade are right angled triangles as shown.

Prove

$$\frac{\text{area } \Delta ade}{\text{area } \Delta abc} = \frac{|de|^2}{|bc|^2}$$



- (vii) Calculate the length of the radius of a circle if one of its diameters has end points (3, -1) and (-3, 1).
- (viii) Find the coordinates of the image of (-3, 4) under the rotation about the origin of $+90^{\circ}$.
- (ix) If $13 \sin x = 5$ where $0 \le x \le \frac{\pi}{2}$, find the value of $\sin 2x$ without reading the values from the Tables.
- (x) ap is a median of the $\triangle aob$. m is the midpoint of [ap]. Express \overrightarrow{m} in terms of \overrightarrow{a} and \overrightarrow{b} , where o is the origin.



35787

2. The lower portion (A) of a test-tube is hemispherical and the upper portion (B) is cylindrical.

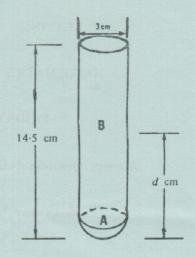
The length of the test-tube is 14.5 cm and its diameter is 3 cm.

Calculate

- (i) the length of B
- (ii) the volume of B, in terms of π
- (iii) the volume of the test-tube (i.e. the volume of $\bf A$ and $\bf B$) in terms of π .

If water is poured into the test-tube find

(iv) the depth, d, of the water when its volume is half the volume of the test-tube.



- 3. (i) Prove that the areas of two triangles of equal height are proportional to the lengths of their bases.
 - (ii) abcd is a parallelogram. The diagonals intersect in k. t is the mid point of [ab].

State the value of the ratio

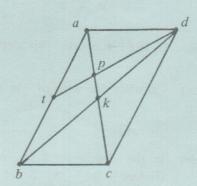
$$\frac{\text{area}}{\text{area}} \frac{\triangle dkc}{\triangle dac}$$

and

$$\frac{\text{area}}{\text{area}} \frac{\Delta acd}{\Delta atd}$$

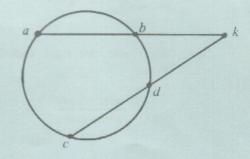
If the area of the triangle atd is 6, state the area of the triangle kbc.

Find the value of |ap|: |pk|.



4. (i) [ab] and [cd] are two chords of a circle. If ab and cd intersect in k, prove

$$|ka| \cdot |kb| = |kc| \cdot |kd|$$

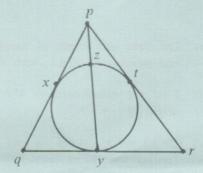


(ii) pqr is a triangle and xyt is its incircle.Prove

$$|px|^2 = |pt|^2.$$

Hence, prove

$$|pr| + |rq| > |pq|$$
.



- 5. L is the line 2x 5y + 10 = 0.
 - (i) Find the coordinates of q, i.e. where L intersects the x-axis.
 - (ii) Find the equation of the line M through r(2, 0), the slope of M being $\frac{5}{2}$.

Calculate

- (iii) the coordinates of p where p is $L \cap M$
- (iv) the coordinates of s, the fourth point of the parallelogram pqsr
- (v) the area of pqsr.

OVER →

- 6. (i) Write down the equation of the circle, S, of radius length $\sqrt{13}$, centre the origin.
 - (ii) Calculate the coordinates of the points of intersection of S and the line 2x + 3y = 0.
 - (iii) Find the equation of T, the tangent to S at the point (3, -2) of the circle.
 - (iv) K is the image of S under the axial symmetry in the tangent T. Write down the equation of K.
 - (v) p is a point of K which is farther from the x-axis than any other point of K. Find the y-coordinate of p in the form $a + \sqrt{b}$.
- 7. (a) Using the same axes and scales draw the graph of

(i)
$$\sin x$$

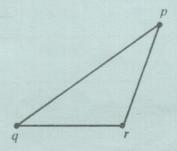
(ii)
$$\sin \frac{x}{2}$$

in the domain $-2\pi \le x \le 2\pi$.

Given that the period of $\sin \frac{x}{2}$ is 4π , state a value of x, greater than 2π , at which the graphs, if continued, would intersect.

(b) In the triangle pqr, |pq| = 16|qr| = 10 and $|\angle prq| = 106°16'$.

Calculate $|\angle rpq|$ as accurately as the Tables allow.

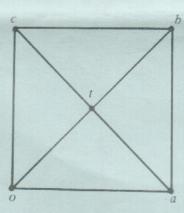


8. (a) oabc is a square. o is the origin.

Using only the letters in the diagram name a vector equal to

(i)
$$\vec{oc} - \frac{1}{2} \vec{ac}$$

(ii)
$$\vec{ot} - \vec{cb}$$
.



- (b) $\vec{h} = 6\vec{i} 8\vec{j}$ and $\vec{k} = 4\vec{i} 3\vec{j}$.
 - (i) If ohkm is a parallelogram, o being the origin, express \overrightarrow{m} in terms of \overrightarrow{i} and \overrightarrow{j} ,
 - (ii) if $\overrightarrow{p} = \overrightarrow{k} + \alpha \overrightarrow{km}$, $\alpha \in \mathbb{R}$ and p is a point on the \overrightarrow{j} -axis, calculate the value of α . Express \overrightarrow{p} in terms of \overrightarrow{i} and \overrightarrow{j} and calculate $|\overrightarrow{pm}|$.