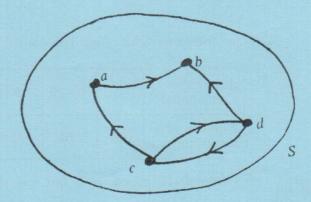
LEAVING CERTIFICATE EXAMINATION, 1983

MATHEMATICS - ORDINARY LEVEL - PAPER II (300 marks)

MONDAY, 13 JUNE - MORNING, 9.30 to 12.00

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each)


Marks may be lost if all your work is not clearly shown

- 1. (i) Express $\frac{2}{3}$ of 0.96 as a percentage of 5.12.
 - (ii) IR£10 is invested at 10% per annum compound interest. Calculate the amount after 2 years.
 - (iii) Express $\frac{11.7 \times 0.3}{1.17 \div 0.3}$
 - (iv) x + 2 is a factor of $x^2 kx^2 + 4x 8$. Find the value of k.

in the form $a \ 10^n$, where $1 \le a < 10$ and $n \in \mathbb{Z}$.

- (v) x, $7\frac{1}{3}$, 11 are three numbers in geometric sequence. Find the value of x.
- (vi) A person measures the length of a bar and gives 12.4 cm as its length. If the true length is within ± 10% of this answer, calculate the difference between his estimation of its possible maximum and possible minimum length.
- (vii) By drawing a rough graph, or otherwise, find the range of values of $x \in \mathbb{R}$ for which $1 4x 5x^2 \ge 0$.
- (vii) The diagram shows the couples of a relation S.

 Write down the couples of the relation $S \circ S$.

- (ix) Write out all the terms of the expansion of $(1 + px)^4.$ Verify your answer by putting $x = \frac{1}{p}$.
- (x) Find the coordinates of the local minimum of the curve $y = x^3 3x^2$.

2. Plot on the Argand diagram the four complex numbers

$$z_1 = 3 + 3i$$
, $z_2 = 2 - 2i$, $z_3 = z_2 - z_1$, $z_4 = z_2 + z_1$.

Evaluate $|z_3|$ and $|z_4|$ and investigate if the image of z_3 under the central symmetry in z_2 is z_4 .

If
$$z_2 - tz_1 = ki$$
, where $t, k \in \mathbb{R}$, find t and k .

Use your diagram to verify that the line joining z_4 and z_2 cuts the imaginary axis at ki.

3. (a) Solve

$$5x - 4y + z = 3$$

 $3x + y - 2z = 31$
 $x + 4y = 21$.

(b) Verify that

$$8 \begin{pmatrix} 10 \\ 2 \end{pmatrix} = 3 \begin{pmatrix} 10 \\ 3 \end{pmatrix}.$$

How many terms of the binomial expansion of

$$(1.01)^{10}$$

are necessary to show that

$$(1.01)^{10} > 1.104$$
 ?

4. The following table gives the contributions in IR£ of 1000 people to a fund:

Amount Contributed	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Number of Contributions	60	80	110	160	200	180	140	70

(Note 0-10 means \geq 0 but less than 10 etc.)

Using these figures fill in the following cumulative frequency table:

Amount Contributed	< 10	< 20	< 30	< 40	< 50	< 60	< 70	< 80
Number of Contributions								

Draw a cumulative frequency curve to illustrate these data and use the curve to estimate

- (i) the median contribution
- (ii) the number of contributions of IR£65 or more
- (iii) the percentage of contributions which were greater than or equal to IR£26 but less than IR£55.

- 5. The function $f: x \to x^3 2x^2 4x + 3$ is defined for $-2 \le x \le 4$, $x \in \mathbb{R}$. Draw the graph of the function and use it to find, as accurately as possible,
 - (i) the value of x > 0 for which f(x) = 3

and then use this value to estimate $\sqrt{5}$

(ii) the range of values of x for which the tangents to the curve have negative slope (gradient).

- 6. (a) In an arithmetic series the eighteenth term is 70 and the fourteenth term is equal to three times the fifth term.Calculate the sum of the first 50 terms.
 - (b) Explain the meaning of each of the letters in the compound interest formula

$$A = P (1 + \frac{r}{100})^n$$

and show that IR£22 is the amount of IR£ $\frac{22}{(1.02)^4}$ after 4 months at 2% per month compound interest.

Find to the nearest IR£ the least sum of money which must be lodged in a bank \underline{now} at 2% per month compound interest to enable a withdrawal of IR£22 to be made at the end of each of the next 4 months from now.

 $(\text{Take } (1.02)^4 = 1.08, (1.02)^3 = 1.06, (1.02)^2 = 1.04)$

7. A manufacturer makes two models, A and B, of a piece of merchandise. His customers require at least 25 per month of A and 50 per month of B. He has only one finishing machine which works for 2 hours on each model A and for 1 hour on each model B and which can work for at most 340 hours per month. The maximum number of pieces he can manufacture in a month is 300.

If he makes a profit of IR£15 on each model A and IR£10 on each model B, how many of each should he make in a month to maximise his profit, assuming he can sell all he makes?

8. (a) Differentiate from first principles

$$3x^2 - 1$$

with respect to x.

- (b) (i) Find the coefficient of x^3 in the derivative of $(3x^2 x 1)(1 2x^2)$ with respect to x.
 - (ii) Find the value of $\frac{dy}{dx}$ at x = 1 when $y = (3x^2 x 1)^{20}.$
- (c) Explain the geometrical meaning of $\frac{dy}{dx}$ and draw a rough graph of a function y = f(x) which satisfies the conditions

$$y = 2 \quad \text{at } x = 0$$

$$\frac{dy}{dx} = 0 \quad \text{at } x = 0$$

$$\frac{dy}{dx} > 0 \quad \text{at } 0 < x \le 2.$$