# Coimisiún na Scrúduithe Stáit State Examinations Commission

## **LEAVING CERTIFICATE EXAMINATION, 2004**

## **MATHEMATICS — HIGHER LEVEL**

#### PAPER 2 (300 marks)

#### MONDAY, 14 JUNE — MORNING, 9:30 to 12:00

Attempt **FIVE** questions from Section **A** and **ONE** question from Section **B**. Each question carries 50 marks.

WARNING: Marks will be lost if all necessary work is not clearly shown.

#### SECTION A Answer FIVE questions from this section.

- 1. (a) A circle has centre (-1, 5) and passes through the point (1, 2). Find the equation of the circle.
  - (b) The point a(5, 2) is on the circle  $K: x^2 + y^2 + px 2y + 5 = 0$ .
    - (i) Find the value of *p*.
    - (ii) The line L: x y 1 = 0 intersects the circle K. Find the co-ordinates of the points of intersection.
  - (c) The y-axis is a tangent to the circle  $x^2 + y^2 + 2gx + 2fy + c = 0$ .
    - (i) Prove that  $f^2 = c$ .
    - (ii) Find the equations of the circles that pass through the points (-3, 6) and (-6, 3) and have the *y*-axis as a tangent.
- 2. (a)  $\vec{r} = 12\vec{i} 35\vec{j}$ . Find the unit vector in the direction of  $\vec{r}$ .
  - (b) *oabc* is a quadrilateral, where *o* is the origin.  $\overrightarrow{ad} = 3\overrightarrow{dc}$  and  $\overrightarrow{ab} = 3\overrightarrow{c}$ .
    - (i) Express  $\vec{d}$  in terms of  $\vec{a}$  and  $\vec{c}$ .
    - (ii) Express  $\vec{db}$  in terms of  $\vec{a}$  and  $\vec{c}$ .
    - (iii) Show that *o*, *d* and *b* are collinear.
  - (c) p and q are points and o is the origin. $p, q \text{ and } o \text{ are not collinear and } \begin{vmatrix} \vec{p} \\ \vec{p} \end{vmatrix} = \begin{vmatrix} \vec{q} \\ \vec{q} \end{vmatrix}.$ 
    - (i) Prove that  $\overrightarrow{pq}$  is perpendicular to  $\left(\overrightarrow{p+q}\right)$ .
    - (ii) Prove that  $\overrightarrow{po} \cdot \overrightarrow{pq} = \frac{1}{2} \left| \overrightarrow{pq} \right|^2$ .





- 3. (a) a(-1,4) and b(9,-1) are two points and p is a point in [ab]. Given that |ap|:|pb|=2:3, find the co-ordinates of p.
  - (b) (i) Calculate the perpendicular distance from the point (-1, -5) to the line 3x-4y-2=0.
    - (ii) The point (-1, -5) is equidistant from the lines 3x 4y 2 = 0 and 3x 4y + k = 0, where  $k \neq -2$ . Find the value of k.
  - (c) f is the transformation  $(x, y) \rightarrow (x', y')$ , where x' = 2x y and y' = x + y. *L* is the line y = mx + c. *K* is the line through the origin that is perpendicular to *L*.
    - (i) Find the equation of f(L) and the equation of f(K).
    - (ii) Find the values of *m* for which  $f(K) \perp f(L)$ . Give your answer in surd form.
- 4. (a) A is an acute angle such that  $\tan A = \frac{8}{15}$ . Without evaluating A, find
  - (i)  $\cos A$
  - (ii)  $\sin 2A$ .
  - (b) (i) Prove that  $\cos 2A = \cos^2 A \sin^2 A$ . Deduce that  $\cos 2A = 2\cos^2 A - 1$ .
    - (ii) Hence, or otherwise, find the value of  $\theta$  for which

$$2\cos\theta - 7\cos\left(\frac{\theta}{2}\right) = 0$$
, where  $0^0 \le \theta \le 360^0$ .

Give your answer correct to the nearest degree.

- (c) a, b and c are the centres of circles  $K_1, K_2$  and  $K_3$  respectively. The three circles touch externally and  $ab \perp ac$ .  $K_2$  and  $K_3$  each have radius  $2\sqrt{2}$  cm.  $K_2$ 
  - (i) Find, in surd form, the length of the radius of  $K_1$ .
  - (ii) Find the area of the shaded region in terms of  $\pi$ .



- 5. (a) Prove that  $\cos^2 A + \sin^2 A = 1$ , where  $0^\circ \le A \le 90^\circ$ .
  - (b) (i) Show that  $(\cos x + \sin x)^2 + (\cos x \sin x)^2$  simplifies to a constant.
    - (ii) Express  $1 (\cos x \sin x)^2$  in the form  $a \sin bx$ , where  $a, b \in \mathbb{Z}$ .
  - (c) The diagram shows a rectangular box. Rectangle *abcd* is the top of the box and rectangle *efgh* is the base of the box.
    - |ab| = 4 cm, |bf| = 3 cm and |fg| = 12 cm.
    - (i) Find |af|.
    - (ii) Find |ag|.



(iii) Find the measure of the acute angle between [ag] and [df]. Give your answer correct to the nearest degree.

6.

(a) A committee of five is to be selected from six students and three teachers.

- (i) How many different committees of five are possible?
- (ii) How many of these possible committees have three students and two teachers?

(b) (i) Solve the difference equation  $3u_{n+2} - 2u_{n+1} - u_n = 0$ , where  $n \ge 0$ , given that  $u_0 = 3$  and  $u_1 = 7$ .

- (ii) Evaluate  $\lim_{n\to\infty} u_n$ .
- (c) Eight cards are numbered 1 to 8. The cards numbered 1 and 2 are red, the cards numbered 3 and 4 are blue, the cards numbered 5 and 6 are yellow and the cards numbered 7 and 8 are black.
  Four cards are selected at random from the eight cards.

Find the probability that the four cards selected are:

- (i) all of different colours
- (ii) two odd-numbered cards and two even-numbered cards
- (iii) all of different colours, two odd-numbered and two even-numbered.

- 7. At the Olympic Games, eight lanes are marked on the running track. **(a)** Each runner is allocated to a different lane. Find the number of ways in which the runners in a heat can be allocated to these lanes when there are
  - eight runners in the heat (i)
  - five runners in the heat and any five lanes may be used. (ii)
  - **(b)** In a class of 56 students, each studies at least one of the subjects Biology, Chemistry, Physics. The Venn diagram shows the numbers of students studying the various combinations of subjects.



- A student is picked at random from the whole class. **(i)** Find the probability that the student does not study Biology.
- (ii) A student is picked at random from those who study at least two of the subjects. Find the probability that the student does not study Biology.
- Two students are picked at random from the whole class. (iii) Find the probability that they both study Physics.
- (iv) Two students are picked at random from those who study Chemistry. Find the probability that exactly one of them studies Biology.
- The mean of the real numbers p, q and r is  $\bar{x}$  and the standard deviation is  $\sigma$ . (c)
  - Show that the mean of the four numbers p, q, r and  $\overline{x}$  is also  $\overline{x}$ . (i)
  - The standard deviation of p, q, r and  $\overline{x}$  is k. (ii) Show that  $k : \sigma = \sqrt{3} : 2$ .

#### **SECTION B Answer ONE question from this section.**

| 8. | <b>(a)</b> | Use integration by parts to find $\int x \sin x dx$ . |                                                                                                                                                                      |  |  |  |
|----|------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    | (b)        | f(x) =                                                | $f(0) + \frac{f'(0)x}{1!} + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!} + \dots$ is the Maclaurin series.                                                           |  |  |  |
|    |            | (i)                                                   | Derive the first five terms of the Maclaurin series for $e^x$ .                                                                                                      |  |  |  |
|    |            | (ii)                                                  | Hence write down the first five terms of the Maclaurin series for $e^{-x}$<br>and deduce the first three non-zero terms of the series for $\frac{e^x + e^{-x}}{2}$ . |  |  |  |
|    |            | (iii)                                                 | Write the general term of the series for $\frac{e^x + e^{-x}}{2}$ and use the Ratio Test to show that the series converges for all <i>x</i> .                        |  |  |  |
|    | (c)        | A soli<br>circun                                      | d cylinder has height $h$ and radius $r$ . The height of the cylinder, added to nference of its base, is equal to 3 metres.                                          |  |  |  |
|    |            | (i)                                                   | Express the volume of the cylinder in terms of <i>r</i> and $\pi$ .                                                                                                  |  |  |  |
|    |            |                                                       |                                                                                                                                                                      |  |  |  |

(ii) Find the maximum possible volume of the cylinder in terms of  $\pi$ .

the

- 9. (a) z is a random variable with standard normal distribution. Find the value of  $z_1$  for which  $P(z \le z_1) = 0.9370$ .
  - (b) A child throws a ball at a group of three skittles. The probability that the ball will knock 0, 1, 2 or 3 of the skittles is given in the following probability distribution table:

| x    | 0   | 1   | 2   | 3 |
|------|-----|-----|-----|---|
| P(x) | 0.1 | 0.1 | 0.5 | k |

- (i) Find the value of k.
- (ii) Find the mean of the distribution.
- (iii) Find the standard deviation of the distribution, correct to two decimal places.
- (c) Before local elections, a political party claimed that 30% of the voters supported it. In a random sample of 1500 voters, 400 said they would vote for that party. Test the party's claim at the 5% level of significance.

10. (a) The binary operation \* is defined by a \* b = a + b - ab, where  $a, b \in \mathbb{R} \setminus \{1\}$ .

- (i) Find the identity element.
- (ii) Calculate  $3^{-1}$ , the inverse of 3.
- (iii) Find  $x^{-1}$  in terms of x.
- (iv) Show that (a \* b) \* c = a \* (b \* c).
- (v) Show that  $a * b \neq 1$ , for all  $a, b \in \mathbf{R} \setminus \{1\}$ .
- (b) Prove that if H and K are subgroups of G, then so also is  $H \cap K$ .

11. (a) 
$$f$$
 is the transformation  $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} x' \\ y' \end{pmatrix}$  where  $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ .

o is the point (0, 0), p is the point (1, 0) and q is the point (0, 1).

(i) Find o', p' and q', the images of o, p and q, respectively under f.

(ii) Verify that 
$$|\angle p'o'q'| = 90^\circ$$
.

(b) (i)



The diagram shows an ellipse with eccentricity e, centred at the origin. One focus is the point  $s_1(ea, 0)$  and the other focus is  $s_2$ .

 $x = \frac{a}{e}$  is the equation of the directrix  $D_1$ . p is any point on the ellipse. Noting that  $|ps_1| = e|pf|$ , prove that  $|ps_1| + |ps_2| = 2a$ .

(ii) u (-4, 0) and v (4, 0) are two points.
 w is a point such that the perimeter of triangle uvw has length 18.
 The locus of w is an ellipse. Find its equation.



# Blank Page