AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

LEAVING CERTIFICATE EXAMINATION, 2001

MATHEMATICS — HIGHER LEVEL

PAPER 1 (300 marks)

THURSDAY, 7 JUNE — MORNING, 9.30 to 12.00

Attempt **SIX QUESTIONS** (50 marks each).

WARNING: Marks may be lost if all necessary work is not clearly shown.

1. (a) Find the real numbers a and b such that

$$x^{2} + 4x - 6 = (x + a)^{2} + b$$
 for all $x \in \mathbf{R}$.

(b) Let $f(x) = 2x^3 + mx^2 + nx + 2$ where *m* and *n* are constants.

Given that x - 1 and x + 2 are factors of f(x), find the value of m and the value of n.

- (c) $x^2 px + q$ is a factor of $x^3 + 3px^2 + 3qx + r$.
 - (i) Show that $q = -2p^2$.
 - (ii) Show that $r = -8p^3$.
 - (iii) Find the three roots of $x^3 + 3px^2 + 3qx + r = 0$ in terms of p.
- 2. (a) Solve the simultaneous equations

$$x - y = 0$$

 $(x + 2)^{2} + y^{2} = 10.$

(b) (i) Solve for
$$x$$

 $\left|3x+5\right| < 4.$

- (ii) Simplify $\left(x^2 + \sqrt{2} + \frac{1}{x^2}\right)\left(x^2 \sqrt{2} + \frac{1}{x^2}\right)$ and express your answer in the form $x^n + \frac{1}{x^n}$ where *n* is a whole number.
- (c) α and β are real numbers such that $\alpha + \beta = -7$ and $\alpha\beta = 11$.
 - (i) Show that $\alpha^2 + \beta^2 = 27$.
 - (ii) Find a quadratic equation with roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ and write your answer in the form $px^2 + qx + r = 0$ where $p, q, r \in \mathbb{Z}$.

3. (a) Let $u = \frac{1+3i}{3+i}$ where $i^2 = -1$.

- (i) Express u in the form a + ib where $a, b \in \mathbf{R}$.
- (ii) Evaluate |u|.
- (b) (i) Write the simultaneous equations

$$x - \sqrt{3}y = -2$$

$$\sqrt{3}x + y = 2\sqrt{3}$$

in the form $A\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-2\\2\sqrt{3}\end{pmatrix}$ where A is a 2×2 matrix.

(ii) Then, find A^{-1} and use it to solve the equations for x and y.

(c) (i) Write
$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 3 \\ -4 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 in the form $ax^2 + bxy + cy^2$ where $a, b, c \in \mathbb{Z}$.

(ii) Show that $z^2 - 16$ is a factor of $z^3 + (1+i)z^2 - 16z - 16(1+i)$ and hence, find the three roots of $z^3 + (1+i)z^2 - 16z - 16(1+i) = 0$.

4. (a) The sum of the first *n* terms of an arithmetic series is given by $S_n = 3n^2 - 4n$.

Use S_n to find (i) the first term, T_1 (ii) the sum of the second term and the third term, $T_2 + T_3$.

(b) (i) Show that
$$\frac{1}{(n+2)(n+3)} = \frac{1}{n+2} - \frac{1}{n+3}$$
 for $n \in \mathbb{N}$.
(ii) Hence, find $\sum_{n=1}^{k} \frac{1}{(n+2)(n+3)}$ and evaluate $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$.

(c) (i) Write
$$\frac{n^3 + 8}{n+2}$$
 in the form $an^2 + bn + c$ where $a, b, c \in \mathbf{R}$.
(ii) Hence, evaluate $\sum_{n=1}^{30} \frac{n^3 + 8}{n+2}$.
[Note: $\sum_{n=1}^{k} n = \frac{k}{2}(k+1)$; $\sum_{n=1}^{k} n^2 = \frac{k}{6}(k+1)(2k+1)$.]

- 5. (a) The second term, T_2 , of a geometric sequence is 21. The third term, T_3 , is -63.
 - Find (i) the common ratio
 - (ii) the first term.
 - **(b)** (i) Solve $\log_6(x+5) = 2 \log_6 x$ for x > 0.
 - (ii) In the binomial expansion of $(1 + kx)^6$, the coefficient of x^4 is 240. Find the two possible real values of k.
 - (c) Use induction to prove that, for *n* a positive integer,

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

for all $\theta \in \mathbf{R}$ and $i^2 = -1$.

6. (a) Differentiate
$$\frac{x}{1+x^2}$$
 with respect to x.

(b) (i) Given that
$$y = \sqrt{x}$$
, what is $\frac{dy}{dx}$?

(ii) Now, find from first principles the derivative of \sqrt{x} with respect to x.

(c) Let
$$x = t^2 e^t$$
 and $y = t + 2 \ln t$ for $t > 0$.

(i) Find
$$\frac{dx}{dt}$$
 and $\frac{dy}{dt}$ in terms of *t*.
(ii) Hence, show that $\frac{dy}{dx} = \frac{1}{x}$.

7. (a) Taking $x_1 = 1$ as the first approximation to the real root of the equation

 $x^3 + x^2 - 1 = 0,$

use the Newton-Raphson method to find x_2 , the second approximation.

- (b) (i) Differentiate $\tan^{-1} 7x$ with respect to x.
 - (ii) Given that $y = \sin x \cos x$, find $\frac{dy}{dx}$ and express it in the form $\cos nx$ where $n \in \mathbb{Z}$.
- (c) Let $g(x) = x^2 + \frac{a}{x^2}$ where *a* is a real number and $x \in \mathbf{R}$, $x \neq 0$.

Given that g(x) has a turning point at x = 2,

- (i) find the value of *a*
- (ii) prove that g(x) has no local maximum points.

8. (a) Find (i)
$$\int \frac{1}{x^3} dx$$
 (ii) $\int \sin 5x dx$.

(b) Evaluate (i)
$$\int_{0}^{3} \frac{12}{x^{2}+9} dx$$
 (ii) $\int_{0}^{4} \frac{(x+4)}{\sqrt{x^{2}+8x+1}} dx$.

(c) a is a real number such that 0 < a < 8.

The line y = ax intersects the curve y = x(8-x)at x = 0 and at x = p.

- (i) Show that p = 8 a.
- (ii) Show that the area between the curve and the line is $\frac{p^3}{6}$ square units.

