AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

LEAVING CERTIFICATE EXAMINATION, 2000

MATHEMATICS - HIGHER LEVEL - PAPER 1 (300 marks)

THURSDAY, 8 JUNE - MORNING, 9.30 to 12.00

Attempt SIX QUESTIONS (50 marks each).
Marks may be lost if all necessary work is not clearly shown.

1. (a) Show that the following simplifies to a constant when $x \neq 2$

$$
\frac{3 x-5}{x-2}+\frac{1}{2-x} .
$$

(b) $\quad f(x)=a x^{3}+b x^{2}+c x+d$ where $a, b, c, d \in \mathbf{R}$.

If k is a real number such that $f(k)=0$, prove that $x-k$ is a factor of $f(x)$.
(c) $(x-t)^{2}$ is a factor of $x^{3}+3 p x+c$.

Show that
(i) $p=-t^{2}$
(ii) $c=2 t^{3}$.
2. (a) Solve for x, y, z

$$
\begin{aligned}
& 3 x-y+3 z=1 \\
& x+2 y-2 z=-1 \\
& 4 x-y+5 z=4 .
\end{aligned}
$$

(b) Solve $x^{2}-2 x-24=0$.

Hence, find the values of x for which

$$
\left(x+\frac{4}{x}\right)^{2}-2\left(x+\frac{4}{x}\right)-24=0, \quad x \in \mathbf{R}, x \neq 0
$$

(c) (i) Express $a^{4}-b^{4}$ as a product of three factors.
(ii) Factorise $a^{5}-a^{4} b-a b^{4}+b^{5}$.

Use your results from (i) and (ii) to show that

$$
a^{5}+b^{5}>a^{4} b+a b^{4}
$$

where a and b are positive unequal real numbers.
3. (a) Given that $\mathrm{A}=\left(\begin{array}{rr}1 & -2 \\ 2 & 3\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{rr}3 & 1 \\ -5 & -2\end{array}\right)$, find $\mathrm{B}^{-1} \mathrm{~A}$.
(b) (i) Simplify $\left(\frac{-2+3 i}{3+2 i}\right)$ and hence, find the value of $\left(\frac{-2+3 i}{3+2 i}\right)^{9}$ where $i^{2}=-1$.
(ii) Find the two complex numbers $a+i b$ such that

$$
(a+i b)^{2}=15-8 i
$$

(c) Use De Moivre's theorem
(i) to prove that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$
(ii) to express $(-\sqrt{3}-i)^{10}$ in the form $2^{n}(1-i \sqrt{k})$ where $n, k \in \mathbf{N}$.
4. (a) The first three terms of a geometric sequence are

$$
2 x-4, x+1, x-3
$$

Find the two possible values of x.
(b) Given that

$$
u_{n}=\frac{1}{2}\left(4^{n}-2^{n}\right)
$$

for all integers n, show that

$$
u_{n+1}=2 u_{n}+4^{n} .
$$

(c) (i) Given that $g(x)=1+2 x+3 x^{2}+4 x^{3} \ldots \quad$ where $-1<x<1$, show that

$$
g(x)=\frac{1}{(1-x)^{2}}
$$

(ii) $\quad P(n)=u_{1} u_{2} u_{3} u_{4} \ldots u_{n}$ where

$$
u_{k}=a r^{k-1} \text { for } k=1,2,3, \ldots, n \text { and } a, r \in \mathbf{R}
$$

Write $P(n)$ in the form $a^{n} r^{f(n)}$ where $f(n)$ is a quadratic expression in n.
5. (a) Express the recurring decimal $1 . \dot{2}$ in the form $\frac{a}{b}$ where $a, b \in \mathbf{N}$.
(b) Prove by induction that $n!>2^{n}, n \in \mathbf{N}, n \geq 4$.
(c) (i) Solve for x

$$
2 \log _{9} x=\frac{1}{2}+\log _{9}(5 x+18), \quad x>0 .
$$

(ii) Solve for x

$$
3 e^{x}-7+2 e^{-x}=0
$$

6. (a) Differentiate with respect to x
(i) $(1+5 x)^{3}$
(ii) $\frac{7 x}{x-3}, x \neq 3$.
(b) (i) Prove, from first principles, the product rule

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

where $u=u(x)$ and $v=v(x)$.
(ii) Given $y=\sin ^{-1}(2 x-1)$, find $\frac{d y}{d x}$ and calculate its value at $x=\frac{1}{2}$.
(c) $\quad f(x)=\frac{1}{x+1} \quad$ where $x \in \mathbf{R}, \quad x \neq-1$.
(i) Find the equations of the asymptotes of the graph of $f(x)$.
(ii) Prove that the graph of $f(x)$ has no turning points or points of inflection.
(iii) If the tangents to the curve at $x=x_{1}$ and $x=x_{2}$ are parallel and if $x_{1} \neq x_{2}$, show that

$$
x_{1}+x_{2}+2=0 .
$$

7. (a) Find the slope of the tangent to the curve

$$
x^{2}-x y+y^{2}=1 \text { at the point }(1,0)
$$

(b) The parametric equations of a curve are

$$
x=\cos ^{3} t \text { and } y=\sin ^{3} t, \quad 0 \leq t \leq \frac{\pi}{2} .
$$

(i) Find $\frac{d x}{d t}$ and $\frac{d y}{d t}$ in terms of t.
(ii) Hence, find integers a and b such that

$$
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\frac{a}{b}(\sin 2 t)^{2} .
$$

(c) $\quad f(x)=\frac{\ln x}{x}$ where $x>0$.
(i) Show that the maximum of $f(x)$ occurs at the point $\left(e, \frac{1}{e}\right)$.
(ii) Hence, show that $x^{e} \leq e^{x}$ for all $x>0$.
8.
(a) Find
(i) $\int\left(x^{2}+2\right) d x$
(ii) $\int e^{3 x} d x$.
(b) Evaluate
(i) \qquad
(ii) $\int_{0}^{1} \frac{x}{x^{2}+4} d x$.
(c) (i) Find the value of the real number p given that

$$
\int_{2}^{p} \frac{d x}{x^{2}-4 x+5}=\frac{\pi}{4} .
$$

(ii) The region bounded by the curve $y=x^{2}$ and the line $y=4$ is divided into two regions of equal area by the line $y=k$.

Show that $k^{3}=16$.

