1973

PAPER I

- 1. Show that the lines x-3y+1=0, 2x+y-3=0 and 5x-8y=0 are concurrent.

 Prove that the points (t+2, t+2), (t, t+3) and (t-2, t) are not collinear. Find the images of the points under the translation $(t+2, t+2) \rightarrow (0, 0)$ and hence find the perimeter and the area of the triangle determined by the three image points.
- 2. A circle contains the points (2, -1) and (1, 1) and has its centre on the line y 3x + 7 = 0. Find:
 - (i) the equation of the circle,
 - (ii) the points on the circle at which the tangents are parallel to the line y 3x + 7 = 0.
- 3. (a) Find the equation of the parabola with its focus at (1, 2) and directrix the line 3x 4y + 10 = 0.
 - (b) Find the equation of the tangent at (2, -2) to the ellipse

$$\frac{(x-1)^2}{2} + \frac{y^2}{8} = 1$$

4. (a) Given the following matrices

$$A = \begin{bmatrix} \frac{1}{2} & \frac{2}{3} \\ \frac{1}{2} & -\frac{2}{3} \end{bmatrix} X = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} Y = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} Z = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

express A in the form $\alpha X + \beta Y + \gamma Z + \delta W$, where α , β , γ , δ are real numbers.

(b) If λ_1 , λ_2 are the roots of the quadratic equation $\lambda^2 - 3\lambda - 4 = 0$, where λ_1 is the positive root, show that

The quadratic equation
$$\lambda^2 - 3\lambda - 4 = 0$$
, where λ_1 is
$$\begin{bmatrix}
2 - \lambda_1 & 3 \\
2 & 1 - \lambda_1
\end{bmatrix}
\begin{bmatrix}
\frac{1}{2} \\
\frac{1}{3}
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix},$$

$$\begin{bmatrix}
2 & 3 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
-1
\end{bmatrix} = \lambda_2 \begin{bmatrix}
1 \\
-1
\end{bmatrix}.$$

Show also that

5. If \vec{i} and \vec{j} are unit vectors along the x-axis and y-axis, respectively, prove that the vector $\vec{p} = 3\vec{i} - 2\vec{j}$ is orthogonal to the line 3x - 2y + 4 = 0.

Find a vector \vec{v} and a scalar k such that any point on the line 3x - 2y + 4 = 0 can be written as $\vec{v} + t (\vec{v} - k\vec{p})$, where $t \in R$.

6. (i) What is meant by the scalar product \vec{x} . \vec{y} of the vector \vec{x} and the vector \vec{y} ?

Represent geometrically the equality \vec{x} . $\vec{y} = \vec{y}$. \vec{x} .

- (ii) $\vec{u},\vec{v},$ and \vec{w} are vectors such that $\vec{u}\perp\vec{w}$ and $\vec{v}\perp\vec{w}$. Prove that $\overset{\rightarrow}{(u+v)}\perp\vec{w}$. (Note: the symbol \perp means "is perpendicular to").
- (iii) \vec{a} and \vec{c} are the position vectors (3, 4) and (5, 1), respectively. The vector \vec{a} can be regarded as the sum of two components, one of which is parallel to \vec{c} and the other perpendicular to \vec{c} . Find the component which is parallel to \vec{c} .

Find, also, a scalar k such that

$$\vec{a} \cdot \left(\vec{c} - \frac{\vec{ka}}{|\vec{a}|} \right) = 0.$$

7. (i) Prove that

$$\sin 2A = \frac{2\tan A}{1 + \tan^2 A}$$

and hence, or otherwise, express tan 15° in surd form.

(ii) Express $a\cos\phi + b\sin\phi$ in the form $k\cos(\phi - a)$. Find the domain of values of p for which the equation $a\cos\phi + b\sin\phi = p$ has a solution. Hence, or otherwise, solve the equation

$$\cos \theta + \sqrt{3} \sin \theta = 1.$$

Prove De Moivres Theorem.

If $z = \cos \theta + i \sin \theta$, prove $z^n + z^{-n} = 2 \cos n \theta$ and find $\sin n\theta$ in terms of z.

$$(\sin x + i\cos x)^n = \cos n\left(\frac{\pi}{2} - x\right) + i\sin n\left(\frac{\pi}{2} - x\right),$$

where n is a positive integer.

- (a) Express $\frac{2+i}{1+i}$ in the form a+ib, where a and b are rational.
 - If arg $(z_3-z_2)=$ arg (z_3-z_1) , prove that z_1 , z_2 and z_3 are collinear.
 - Show that z=i is a solution of $z^2-z(1+2i)-(1-i)=0$ and find the other solution of the equation.
- 10A. Prove that the set K of all numbers of the form $a + b\sqrt{3}$ (a and b integers) is a group under addition. Is K a group under multiplication? Give your reason. Let $R^* = \{r_1, r_2, r_3\}$ be the set of rotations of the equilateral triangle abc onto itself, and let ρ indicate the reflection in the axis of symmetry containing a. Let $S = \{ \rho \circ r_1, \rho \circ r_2, \rho \circ r_3 \}$. Is S, \circ a group?

- 10B. Find the probability of 4 turning up at least once in (i) two tosses, (ii) three tosses of a fair die. A factory finds that on average 20% of the buttons produced by a given machine will be defective. If 10 buttons are selected at random find the probability
 - that exactly three of them will be defective,
 - that either three or four of them will be defective.