PAPER II

Six questions to be answered. (300 marks)

- 1. (a) If α , β , γ are roots of the equation $x^3 2x + 5 = 0$ form the equations whose roots are (i) $\alpha + 1$, $\beta + 1$, $\gamma + 1$; (ii) 2α , 2β , 2γ .
 - (b) Show that $x^3 + 2x 4 = 0$ has a root between $1 \cdot 1$ and $1 \cdot 2$, and find the value of that root correct to 2 places of decimals.
- 2. (a) Prove that $(x + 1)^n = \sum_{r=0}^n {^nC_r} x^r$. (Note: ${^nC_0} = 1$).
 - (b) Given that the binomial expansion of $(1+x)^k$ for k a positive integer also holds true for any rational k provided |x| < 1 write down the fourth term of this expansion if $k = \frac{1}{3}$ and $x = \frac{1}{20}$.
 - (c) Use the binomial theorem to evaluate

correct to 3 places of decimals.

3. (a) Test the following series for convergence

$$\frac{1}{1!}$$
 + $\frac{3}{2!}$ + $\frac{5}{3!}$ + $\frac{7}{4!}$ + . . .

'(b) State the ratio test for the convergence of a series of positive terms. Hence or otherwise prove that the series

$$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

converges for every positive value of x.

4. t_1 , t_2 , t_3 , t_k . . . is an infinite sequence of real numbers. The sum of the first k terms (k = 1, 2, 3, $\cdot \cdot \cdot)$ is S_{ν} .

Given that $S_k = \log_{10}(k^2 + k)$

- (i) prove that each term of the sequence is positive,
- (ii) prove that the sequence is decreasing (e.g. $t_k < t_{k-1} \text{ for } k \ge 2),$
- (iii) find lim ty.
- 5. (a) Assuming that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ differentiate $\sin x$ with respect to x from first principles.
 - (b) Differentiate with respect to $oldsymbol{x}$
 - (i) 2;
 - (ii) $e^{-x}\sin 2x$.
 - (c) Prove that $\frac{d}{dx}(a^x) = a^x \log_a a$.
- 6. If for a car travelling at a steady speed of v miles per hour the rate k of consumption of petrol in gallons per hour is given by the formula $k = \frac{1}{2} [1 + (0.0001)v^2]$ find an expression for the total amount of petrol used in a journey of 150 miles.

What value of v in m.p.h. would minimise the amount of petrol used? Compute this minimal amount in gallons. (Give each answer to 2 places of decimals.)

7. f and g are functions defined as follows:

$$f(x) = x(1 - x^2)^{-\frac{1}{2}}, x \in R,$$

 $g(x) = (1 - x^2)^{\frac{1}{2}}, x \in R.$

Show that f(-x) = -f(x),

Determine the slope of the graph of f where it intersects the x-axis and sketch the graph. Show that $g^1(x) = -f(x)$ and compute

$$\int_0^{\frac{1}{2}} f(x) dx.$$

- 8. Evaluate
 - (i) (a) $\int_{\alpha}^{\beta} \frac{3}{\sqrt{t}} dt;$ (b) $\int_{\alpha}^{\beta} \sqrt[3]{t} dt;$
- (ii) $\int_0^1 \frac{dx}{\sqrt{2-x}};$

(iii)
$$\int_{0}^{\frac{\pi}{6}} \cos 2\theta \cos 4\theta \ d\theta.$$

- 9. Find the area of the smaller region enclosed by the parabola $y^2 = 2x$ and the circle $x^2 + y^2 = 3$.
- 10. A thin vertical pole of height
 10 feet is fixed in level ground.
 Two taut light wires are tied to
 a peg in the ground at a distance
 x feet from the foot of the pole.
 One wire stretches to the top of
 the pole and the other to a point
 midway up the pole.

The angle between the wires is θ . If the size of θ is to be a maximum calculate the distance x. (See diagram).

