LEAVING CERTIFICATE EXAMINATION, 1962.

MATHEMATICS—Geometry—Honours.

FRIDAY, 8th JUNE .- MORNING, 10 TO 12.30.

Not more than seven questions may be answered. Mathematical Tables may be obtained from the Superintendent.

1. O[ACBD] is a harmonic pencil.

If a line through B parallel to OA cuts OC (produced) at P and OD at Q, prove that PB = BQ.

If AOB is a right angle, prove that OB and OA are the internal and external bisectors, respectively, of the angle COD.

(35 mark) (35 marks.)

2. PQ is a common tangent to two circles which cut at A and B, the points P and Q being on the circles. If AB (produced) cuts the circle through P,A,Q at C, prove that PQ bisects BC.

(35 marks.)

- 3. (a) P is a point such that the tangents from P to two given non-intersecting circles are of equal length. Show that the locus of P is a straight line perpendicular to the line of centres.
- (b) Given two circles of a non-intersecting system of coaxal circles, show how to construct (i) the radical axis of the system, (ii) a circle of the system such that its centre is a given point on the line of centres.

4. In a parallelogram OABC, the equations of OA and OC are 3y=x and y=3x, respectively, and B is the point (4,3). Find the equation of the line AB. Find, also, the angle AOC, the equation of the perpendicular from B to OC and the length of the perpendicular from B to OC.

(36 marks.)

5. Find the equation of the circle which has as a diameter the common chord of the two circles $x^2 + y^2 + 6x - 8y - 1 = 0$ and $x^2 + y^2 + 2x - 5y = 0$. Show that the required circle touches the axes of coordinates.

(36 marks.)

- 6. (a) The tangent to a parabola at a point P meets the axis of the parabola at T, and N is the foot of the perpendicular from P to the directrix. If S is the focus of the parabola, prove that NT is parallel to PS.
 - (b) Find the equation of the parabola with focus (1,5) and vertex (-4,0).

(36 marks.)

7. In a triangle ABC, using the usual notation, prove that

$$(i) \quad \frac{b-c}{r} + \frac{c-a}{r} + \frac{a-b}{r} = 0,$$

(ii) $b^2 \sin 2C + c^2 \sin 2B = 2b c \sin A$.

(36 marks.)

- 8. (a) Prove that $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{6} = \frac{\pi}{11}$.
 - (b) Show that $x = \frac{\pi}{10}$ (i.e. $x = 18^{\circ}$) is a particular solution of the equation $\cos 3x = \sin 2x$ and find the general solution of the equation. Hence, or otherwise, find in surd form the value of sin 18°.

(36 marks.)