JUNIOR CERTIFICATE EXAMINATION, 1992

33277

MATHEMATICS - ORDINARY LEVEL - PAPER 2 (300 marks)

FRIDAY, 12th JUNE, MORNING - 9.30 to 12.00.

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each).

Marks may be lost if all your work is not clearly shown.

Mathematics Tables may be obtained from the Superintendent.

- 1. (i) Two angles of a triangle measure 47° 50′ and 62° 40′. Calculate the measure of the third angle.
 - (ii) Calculate the value of x.

(iii) [bd] is a diagonal of the parallelogram abcd. Calculate the value of y.

(iv) pqrs is a square and $|pr| = \sqrt{8}$. Calculate the length of a side of the square.

(v) The area of the Δ pxy is 12. Find the area of the rectangle wxyz.

(vi) In the circle with centre c and of radius 2.5 cm,

|pq| = 4 cm.

Calculate | pr |.

(vii) M and N are parallel lines.

Calculate the value of y.

- (viii) Find the image of the point (3, 4) under the axial symmetry in the Y axis.
 - (ix) Find the image of the point (-2, 2) under the translation $(0, 0) \rightarrow (7, 4)$.
 - (x) If $\cos \theta = 0.585$, use the book of Tables to find the value of $\sin \theta$.
- 2. (a) In a school of 520 pupils, 35% play games. How many pupils do not play games?
 - (b) A rectangular lawn is surrounded by a path.

 The lawn is 40 m long and 20 m wide.

 The path is 1 m wide.

 (Diagram not to scale).

 The path is covered with square paving slabs with side of length 50 cm.

 The slabs are laid parallel to the sides of the lawn.

Calculate:

- (i) the area of the lawn
- (ii) the area of the path
- (iii) the number of paving slabs required to cover the path.

3. abcd is a rectangle having diagonals intersecting at k. awbc and pdbc are parallelograms. |bc| = 4 and |dc| = 3.

- (i) Name any two isosceles triangles not equal in area.
- (ii) Find the image of Δ wbd under the translation \overrightarrow{bc} .
- (iii) Name two angles equal in measure to |∠ awb |.
- (iv) Calculate the area of the figure wbcp.
- (v) Prove that \triangle awb and \triangle pdc are congruent.

- 4. c is the centre of the circle where $| \angle acy | = 60^{\circ}$ and | xb | = 7.
 - (i) Find the image of Δ xcb under the central symmetry in c.
 - (ii) Find $| \angle axc |$.
 - (iii) Name two angles equal in measure to $| \angle acy |$.
 - (iv) Calculate | ab |.
 - (v) Using angles, find the ratio:

area of the region cymb area of the circle

b (3, 6) is a point, as in diagram.

Plot the point a (-2, 1).

Show that $|ab| = \sqrt{50}$.

Find the slope of ab.

Find the equation of the line ab.

Calculate the coordinates of the point q where the line ab cuts the X axis.

· b (3, 6)

Distance formula: $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)}$

Slope formula: $\frac{y_2 - y_1}{x_2 - x_1}$

Equation of line: $y - y_1 = m (x - x_1)$

OR y = mx + c

6. (a) If $\tan A = 0.749$, use the book of Tables to find the angle A.

(b) When the angle of elevation of the sun is 36 ° 50 ′, an upright pole, [rs], casts a shadow of length 5 m. Calculate |rs|.

(c) An aeroplane, Q, takes off at an angle of 18° to the level ground. It travels a distance of 1000 m in 25 seconds, as shown.

Calculate

- speed of Q in m/s.
- (ii) the height of Q above the ground after 25 seconds.