1. (i) Two angles of a triangle measure 47° 50' and 62° 40'.
Calculate the measure of the third angle.

(ii) Calculate the value of x.

(iii) \(bd \) is a diagonal of the parallelogram \(abcd \).
Calculate the value of \(y \).

(iv) \(pqrs \) is a square and \(\lvert qr \rvert = \sqrt{8} \).
Calculate the length of a side of the square.

(v) The area of the \(\Delta pxy \) is 12.
Find the area of the rectangle \(wxyz \).
(vi) In the circle with centre c and of radius 2.5 cm,
\[|pq| = 4 \text{ cm}. \]
Calculate $|pr|$.

(vii) M and N are parallel lines.
\[\text{Calculate the value of } y. \]

(viii) Find the image of the point $(3, 4)$ under the axial symmetry in the Y axis.

(ix) Find the image of the point $(-2, 2)$ under the translation $(0, 0) \rightarrow (7, 4)$.

(x) If $\cos \theta = 0.585$, use the book of Tables to find the value of $\sin \theta$.

2. (a) In a school of 520 pupils, 35% play games.
How many pupils do not play games?

(b) A rectangular lawn is surrounded by a path.
The lawn is 40 m long and 20 m wide.
The path is 1 m wide.
(Diagram not to scale).
The path is covered with square paving slabs with side of length 50 cm.
The slabs are laid parallel to the sides of the lawn.

Calculate:

(i) the area of the lawn

(ii) the area of the path

(iii) the number of paving slabs required to cover the path.
3. \(abcd \) is a rectangle having diagonals intersecting at \(k \).
\(awbc \) and \(pdbc \) are parallelograms.

\[|bc| = 4 \text{ and } |dc| = 3. \]

(i) Name any two isosceles triangles not equal in area.

(ii) Find the image of \(\triangle wbd \) under the translation \(\overline{bc} \).

(iii) Name two angles equal in measure to \(|\angle awb| \).

(iv) Calculate the area of the figure \(wbcp \).

(v) Prove that \(\triangle awb \) and \(\triangle pdc \) are congruent.

4. \(c \) is the centre of the circle where

\[|\angle acy| = 60^\circ \text{ and } |xb| = 7. \]

(i) Find the image of \(\triangle xcb \) under the central symmetry in \(c \).

(ii) Find \(|\angle axc| \).

(iii) Name two angles equal in measure to \(|\angle acy| \).

(iv) Calculate \(|ab| \).

(v) Using angles, find the ratio:

\[
\frac{\text{area of the region } cymb}{\text{area of the circle}}
\]
5. \(b (3, 6) \) is a point, as in diagram.

Plot the point \(a (-2, 1) \).

Show that \(|ab| = \sqrt{50} \).

Find the slope of \(ab \).

Find the equation of the line \(ab \).

Calculate the coordinates of the point \(q \) where the line \(ab \) cuts the \(X \) axis.

\[
\begin{align*}
\text{Distance formula:} & \quad \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\
\text{Slope formula:} & \quad \frac{y_2 - y_1}{x_2 - x_1} \\
\text{Equation of line:} & \quad y - y_1 = m(x - x_1) \\
& \quad \text{OR} \quad y = mx + c
\end{align*}
\]

6. (a) If \(\tan \theta = 0.749 \), use the book of Tables to find the angle \(\theta \).

(b) When the angle of elevation of the sun is \(36^\circ 50' \), an upright pole, \([rs]\), casts a shadow of length 5 m. Calculate \(|rs| \).

(c) An aeroplane, \(Q \), takes off at an angle of \(18^\circ \) to the level ground. It travels a distance of 1000 m in 25 seconds, as shown.

Calculate

(i) the average speed of \(Q \) in m/s.

(ii) the height of \(Q \) above the ground after 25 seconds.