AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

JUNIOR CERTIFICATE EXAMINATION, 2002
 MATHEMATICS - HIGHER LEVEL
 MONDAY, 10 JUNE - MORNING, 9.30 to 12.00
 PAPER 2 (300 marks)

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each).
WARNING: Marks will be lost if necessary work is not clearly shown.
Mathematics Tables may be obtained from the Superintendent.

1. (i) Calculate $\frac{3}{7}$ of 98 and express your answer as a fraction of 56 .

Give your answer in its simplest form.
(ii) $€ 225$ is shared among three people in the ratio $1: \frac{3}{2}: 2$. Calculate the largest share.
(iii) The height of a cone is twice the radius. The volume of the cone is $\frac{16}{3} \pi \mathrm{~cm}^{3}$.

Calculate the radius.
(iv) In the triangle $p q r, x y$ is parallel to $q r$.
$|p q|=14 \mathrm{~cm},|q r|=21 \mathrm{~cm}$ and $|x q|=4 \mathrm{~cm}$.
Find $|x y|$.

(v) $a b c d$ is a parallelogram.
$a e$ and $c f$ are perpendicular to $b d$ as shown.
Prove the triangles abe and $d c f$ are congruent.

(vi) $p t$ is a tangent to the circle at t. $|p t|=8 \mathrm{~cm}$ and $|a b|=12 \mathrm{~cm}$.
Find $|p b|$.
[Hint: Let $|p b|=x$.]

(vii) $[a b]$ is a diameter of the circle of centre o. c and d are points on the circle.
[ab] and [$c d]$ intersect at k.
$|\angle c d b|=38^{\circ}$ and $|\angle c k b|=80^{\circ}$.
Write down $|\angle c a b|$ and then find $|\angle d c b|$.

(viii) The line $2 x-3 y+12=0$ cuts the x-axis at p and the y-axis at q.

Find the coordinates of the midpoint of $[p q]$.
(ix) Verify that the point $(1,-1)$ is on the line $3 x+2 y-1=0$.

Find the equation of the image of this line under the translation $(1,-1) \rightarrow(-2,3)$.
(x) $\sqrt{3} \tan 2 A=1$ where $0^{\circ} \leq A \leq 90^{\circ}$. Find A.
2. (a) $€ 750$ was invested for three years at compound interest.

The rate of interest for each of the first two years was 4% per annum.
(i) Calculate the amount of the investment at the end of the second year.
(ii) At the end of the third year the amount of the investment was $€ 851.76$.

Calculate the rate of interest for the third year.
(b) Given that $4 x p-3 t=5 p$
(i) express x in terms of p and t
(ii) find the value of x when $t=\frac{2 p}{3}$.
3. (a) Prove that any point on the perpendicular bisector of a given line segment is equidistant from the end points of the line segment.
(b) In the triangle $a b c, a c \perp b c$ and $|\angle a b c|=30^{\circ}$. K is the perpendicular bisector of $[b c]$ and K intersects $[a b]$ at d.
(i) Find $|\angle d c b|$.
(ii) Prove $|d c|=|d a|=|a c|$.
(iii) Find the ratio $\frac{\text { area } \Delta d b e}{\text { area } \Delta a b c}$.

4. (a) Prove that in a right-angled triangle the area of the square on the hypotenuse is the sum of the areas of the squares on the other two sides.
(b) In the triangle $x y z,|\angle x y z|=90^{\circ}$. m is a point on $[x y]$ and n is a point on $[y z]$.
(i) Prove that

$$
|x z|^{2}-|m z|^{2}=|x y|^{2}-|m y|^{2} .
$$

(ii) Deduce that

$$
|x z|^{2}-|m z|^{2}=|x n|^{2}-|m n|^{2} .
$$

5. $a(-1,4), b(3,1)$ and $c(2,0)$ are three points.
(i) Find $|a b|$.
(ii) Find the slope of $a b$.
(iii) The line L passes through the point c and is perpendicular to $a b$.

Find the equation of L.
(iv) Calculate the area of the triangle $a b c$.
(v) The line L intersects $a b$ in d. Use the area of the triangle $a b c$ to find $|c d|$.
6. (a) In the triangle shown,
(i) calculate y
(ii) calculate the area of the triangle.

Give both answers in surd form.

(b) In the triangle $a b c$,
$|\angle a c b|=28^{\circ} 41^{\prime}, \quad|\angle b a c|=23^{\circ} 35^{\prime}$
and $|b c|=15 \mathrm{~cm}$.
(i) Calculate $|a b|$.
(ii) x is on $c b$ such that $a x \perp x b$ as shown.

Calculate | $a x$ |, correct to the nearest cm .

(c) x, y, z are points on the circle of centre o.

The radius of the circle is 10 cm .
The triangle $x o z$ is an equilateral triangle.
Find
(i) area of triangle $x o z$

(ii) area of triangle $x y z$.

