JUNIOR CERTIFICATE EXAMINATION, 2001

MATHEMATICS - HIGHER LEVEL

MONDAY, 11 JUNE - MORNING, 9.30 to 12.00

PAPER 2 (300 marks)

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each).

> Marks may be lost if necessary work is not clearly shown. Mathematics Tables may be obtained from the Superintendent.

1. (i) A sum of money is divided in the ratio $5: 6$. The smaller amount is IR£25. What is the total amount of money?
(ii) A sum of money, invested at 6% per annum interest, amounted to IR£1590 after one year. What sum of money was invested?
(iii) Three tennis balls, each of radius 3.5 cm , fit exactly into a cylindrical tube.

Find, in terms of π, the volume of the tube.
(iv) In the circle, the chords [ab] and [cd] intersect at the point e.
$|\angle b a d|=54^{\circ}$ and $|c b|=|c e|$.
Find $|\angle c b e|$.

(v) The triangle $p q r$ has a right angle at p. The point t is on $[q r]$ such that $|q t|=|q p|$.
$|q r|=17$ and $|p r|=15$.
Find $|p q|$ and hence find $|t r|$.

(vi) Two chords, [ab] and [cd], of a circle intersect externally at p.
$|a b|=7,|b p|=9$ and $|c p|=18$.

Find $|c d|$.
(vii) In the diagram, $c d \perp a b$.
$|\angle c b d|=35^{\circ}$ and $|\angle c a d|=55^{\circ}$.
$|c d|=7,|d b|=10$ and $|a d|=x$.
Show that the triangles $c a d$ and $c d b$ are equiangular.
Hence, find x.

(viii) Find the area of the triangle with vertices $(-3,2),(-1,-2)$ and $(3,0)$.
(ix) $(7,3)$ is the mid-point of the line segment joining $(3, a)$ and $(b, 8)$. Find a and b.
(x) $\operatorname{Sin} A=0.54$ and $0^{\circ} \leq A \leq 90^{\circ}$. Use the Tables to find the value of $\cos 2 A$.
2. (a) A person earns a gross income of IR£494 and has tax-free allowances of IR£144. Tax is paid at 44% of taxable income.
(i) Calculate the person's income after tax is paid.

The tax-free allowances are increased by IR£20 and the rate of tax is reduced to 42%.
(ii) Calculate the increase in the person's income after tax is paid.

A second person with the same tax-free allowances and tax rate as in (ii) pays IR£105 in tax.
(iii) Calculate the second person's gross income.
(b) $\quad a=u+v$ and $b=u-v$.
(i) Express $a^{2}-b^{2}$ in terms of u and v.
(ii) Hence, or otherwise, evaluate $u v$ when $a=29$ and $b=21$.
3. (a) Prove that any point on the bisector of an angle is equidistant from the arms of the angle.
(b) The circle, centre o, is inscribed in the triangle $p q r$.
The circle touches the sides of the triangle at the points a, b and c.
(i) Use the triangles poa and poc to prove that $|p a|=|p c|$.
(ii) Hence, show that

$$
|p q|-|p r|=|q b|-|r b| .
$$

4. (a) Prove that a line is a tangent to a circle at a point t on the circle if it is perpendicular to the diameter through t.
(b) $p t$ is a tangent to a circle of centre c.
$[t s]$ is a diameter of the circle.
r is a point on the circle such that $|\angle t s r|=63^{\circ}$.
(i) Find $|\angle p t r|$.
q is a point on the circle such that $q r \| t s$.

(ii) Find $|\angle t r q|$.
5. The equation of the line L is $3 x-2 y+6=0$.
(i) Find the slope of L.
(ii) The point $(h,-3)$ is on the line L.

Find the value of h.
(iii) The line K passes through $(h,-3)$ and is perpendicular to L.

Find the equation of K.
(iv) K contains the point $(-1,-5)$.

Find the image of this point under S_{L}, the axial symmetry in L.
(v) L and K cut the y-axis at the points p and q, respectively.

Calculate $|p q|$.
6. (a) Construct an angle A such that $\cos A=\frac{3}{5}$.
(b) A garden pqrs is in the shape of a quadrilateral. $|p q|=15.3 \mathrm{~m},|\angle p q s|=25^{\circ} 50^{\prime}$ and $|\angle q p s|=90^{\circ}$.
(i) Find $|s q|$, correct to the nearest metre.
$|s r|=9 \mathrm{~m}$ and $|\angle q r s|=69^{\circ} 14^{\prime}$.

(ii) Find $|\angle s q r|$, correct to the nearest degree.
(c) $a b c$ is an isosceles triangle with $|a b|=|b c|$. $|\angle b a c|=65^{\circ}$.
(i) Calculate $|\angle a b c|$.

The area of the triangle is $38.3 \mathrm{~cm}^{2}$.
(ii) Find $|a b|$.

