AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

JUNIOR CERTIFICATE EXAMINATION, 2001

> MATHEMATICS - HIGHER LEVEL

THURSDAY, 7 JUNE - MORNING, 9.30 to 12.00

PAPER 1 (300 marks)

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each).
Marks may be lost if necessary work is not clearly shown. Mathematics Tables may be obtained from the Superintendent.

1. (i) A car was bought for IR£18 750. At the end of the first year the value of the car had fallen by 20%.
Find its value at the end of the first year.
(ii) A train travelled 155 km at an average speed of $62 \mathrm{~km} / \mathrm{hr}$.

How long did the journey take?
(iii) The length of a rectangle is three times its width.

The area of the rectangle is $48 \mathrm{~cm}^{2}$.
Calculate the length of the rectangle.
(iv) Evaluate

$$
\sqrt{\frac{1.6}{(0.2)^{2}}-4}
$$

(v) If $y=\frac{x-z t}{3}$, express t in terms of x, y and z.
(vi) $A \cup B=\{1,3,6,7,9,12\}$ and $A \Delta B=\{3,6,9,12\}$.

Write down the elements of $A \cap B$.
(vii) If $x * y=2 x-3 y$, find the value of a for which $a *(4 * 1)=0$.
(viii) Solve the equation $3 x^{2}+10 x-8=0$.
(ix) Express $\frac{1.26 \times 10^{9}}{2.8 \times 10^{12}}$ in the form $a \times 10^{n}$ where $1 \leq a<10$ and $n \in \mathbf{Z}$.
(x) Graph on the number line the solution set of $3 x-5 \leq x+7, x \in \mathbf{N}$.
2. (a) A window is in the shape of a rectangle and semicircle as in the diagram.
The rectangular part of the window is 50 cm high and the radius of the semicircle is 14 cm .

Calculate:
(i) the perimeter of the window
(ii) the area of the window.

Take $\pi=\frac{22}{7}$.

(b) A solid cylinder, made of lead, has radius 4 cm and height 10 cm .
(i) Find the volume of the cylinder in terms of π.

The cylinder is melted down and all of the lead is used to make three identical right circular cones.
The height of each cone is 8 cm .
(ii) Find the length of the radius of each cone.

Give your answer in the form $a \sqrt{b}$, where $a, b \in \mathbf{N}$.
3. (a) Factorise fully each of the following:
(i) $20 x y-4 x^{2}$
(ii) $5 x^{2}-9 x-2$
(iii) $x^{3}-27 y^{3}$.
(b) Find the value of $x^{2}-2 x y+3$ when $x=\frac{1}{2}$ and $y=\frac{2}{3}$.
(c) Solve, correct to two decimal places, the equation

$$
\frac{4}{x+5}-\frac{1}{x+1}=-1, \quad x \neq-5, x \neq-1 .
$$

4. (a) A survey was taken to find out which of the political parties, A, B or C, people voted for in an election. The results of the survey are shown in this pie chart.
420 people voted for party B.
(i) How many people took part in the survey?
(ii) How many people voted for party C ?

(b) The following frequency distribution table shows the scores obtained by 50 people in a quiz.

Score	$0-10$	$10-20$	$20-30$	$30-60$	$60-100$
No. of People	5	12	15	14	4

(Note: 0-10 means 0 or more but less than 10 , etc.)
Copy and complete the following cumulative frequency table:

Score	<10	<20	<30	<60	<100
No. of People	5				

(i) On graph paper, draw the ogive (cumulative frequency curve), putting the number of people on the vertical axis.

Use your graph to estimate:
(ii) the median score in the quiz
(iii) the number of people who scored between 25 and 50
(iv) the interquartile range.
5. (a) Graph the function $f: x \rightarrow 3+3 x-2 x^{2}$ in the domain $-2 \leq x \leq 3, x \in \mathbf{R}$.

Use your graph to estimate
(i) $f(2.5)$
(ii) the roots of the equation $3+3 x-2 x^{2}=0$
(iii) the maximum value of $f(x)$.
(b) $g: x \rightarrow 9-x^{2}$ is a function defined on \mathbf{R}.
(i) What is $g(-4)$?
(ii) Find the values of x for which $g(x)=0$.
(iii) Verify that $g(4)>(g \circ g)(2)$.
6. (a) Solve the simultaneous equations:

$$
\begin{aligned}
3 x-y & =7 \\
\frac{x-1}{3}-\frac{y+4}{2} & =0 .
\end{aligned}
$$

(b) Let $p=\log _{10} 7$ and $q=\log _{10} 2$.

Express each of the following in the form $\log _{10} n, n \in \mathbf{Q}, \mathrm{n}>0$:
(i) $p+q$
(ii) $p-q$.

Express in terms of p and q :
(iii) $\quad \log _{10} 56$.
(c) The sides of a right angled triangle are $3 x, 4 x$ and $5 x$ in length. The area of the triangle is 121.5 square units.
Use this information to write an equation in x.
Solve the equation and hence, find the lengths of the sides of the triangle.

