Six questions to be answered. All questions carry equal marks.

1. If \(\$1 = 100 \) new pence, find the total cost of the following items:
 - 27 litres of petrol \(@ 9 \) new pence per litre
 - 4\(\frac{1}{2}\) metres of cloth \(@ 56 \) new pence per metre
 - 3\(\frac{3}{4}\) kilograms of tomatoes \(@ 30 \) new pence per kilogramme

2. (a) In a supermarket a piece of cheese weighing \(\frac{8}{3} \) ounces is marked \(15 \), \(10 \)d. Another piece of the same type of cheese weighs \(5\frac{2}{3} \) ounces and is marked \(10 \), \(5 \)d. Which piece is being sold at the cheaper rate?

3. If \(A = \{1, 2, 3, 4\} \), \(B = \{1, 3, 5\} \), \(C = \{1, 3, 5\} \), write out the elements of each of the following sets:
 - \(A \cap B \)
 - \(B \cup C \)
 - \(A \cap C \)
 - \(A \cap (B \cup C) \)

4. (a) (i) Express the denary number 200 in binary notation.
 (ii) Find the sum of the following binary numbers: \(111_2 \), \(100_2 \), \(101_2 \), \(1_2 \).

5. (a) \(x \) is a number between 2 and 3. Write down the following numbers in order of size putting the smallest number first:
 - \(2 \), \(x \), \(3 \), \(\frac{5}{2} \), \(\frac{7}{4} \).

(b) Graph on the number line the solution set of
 \[\{x \mid x - 3 \leq -1, \, x \in \mathbb{Z}\} \cup \{x \mid x + 2 > 1, \, x \in \mathbb{Z}\} \]

6. (a) Find the factors of
 - \(2 \), \(t \), \(1 \), \(2 \), \(3 \), \(6 \).
 - \((x - 2y) - 2y + x \).

(b) Solve the equation \(\frac{1}{x} - \frac{1}{x+2} = \frac{3}{2} \).

7. (a) Solve the simultaneous equations
 - \(x - y = 1 \), \(x = 2y + 1 \).

(b) Show that \(x = (\sqrt{5} - 1) \) is a solution of the equation \(x^2 + 2x - 2 = 0 \).

8. The bar-chart shows the number of families in a locality which have 3 children, 4 children, 5 children or 6 children per family.

 Use the bar chart to answer the following:
 - (i) What is the most common number of children in the families?
 - (ii) How many families have fewer than the most common number of children?

9. (a) The diagram shows a wheel which has 5 spokes and which is lying on the ground near 5 pegs \(a, b, c, d, \) and \(e \). Each spoke points at a peg.

 The wheel is rotated on its axle. The couple \((a, c) \) means that the spoke which pointed at \(a \) before the rotation now points at \(c \). By filling in the missing components in these couples indicate what happens to the spokes which pointed at the other pegs:
 \((a, c) \), \((b, i) \), \((c, 4) \), \((d, 3) \), \((e, 1) \).

 (b) Each couple \((x, y) \) in the set below satisfies the equation \(x = \frac{y}{2} - \frac{1}{2} \). Fill in the blanks in the following four couples:
 \(\{(2, _\), \((_\), \((_\), \((_\), \((_\), \((_\), \((_\), \((_\), \((_\), \((_\) \).

10. (a) \(S_1, S_2, S_3 \) are three sequences as follows:
 - \(S_1 = 2, 4, 8, 16, 32, \ldots (6n - 3), \ldots \)
 - \(S_2 = 2, 4, 8, 16, \ldots (-1)^n + 5, \ldots \)
 - \(S_3 = 2, 4, 8, 16, \ldots (-1)^n + 2^n, \ldots \)

 (i) Write down the 6th and 7th terms in each sequence.
 (ii) In which sequence do the terms always get larger and larger.

 (b) A ball drops from a table 3 feet high and bounces several times on the floor. If each bounce is \(\frac{1}{2} \) the height of the previous fall, find the height of the fourth bounce.