INTERMEDIATE CERTIFICATE EXAMINATION. 1988

MATHEMATICS - HIGHER COURSE - PAPER II (300 marks)

SECTION A (100 ma	arks
-------------------	------

If $12_x - 3_x = 4_{10}$, then the base x is

- (a) 4 (b) 5
- (c) 7
- (d) 9

A sold an article to B at a profit of $12\frac{1}{2}\%$. B then sold it to C at a profit of 10%. The percentage increase in price from A to C is

- (a) 10% (b) $12\frac{1}{2}\%$ (c) $22\frac{1}{2}\%$ (d) 23.75%

3. Two spheres have the lengths of their radii in the ratio 2:3. Their corresponding volumes are in the ratio

- (a) 2:3
- (b) 4:9 (c) 8:27
- (d) 16:81

23+8 V42

- x + 2 is a factor of $x^3 + 8$. The other factor is

- (a) $x^2 4$ (b) $x^2 + 4x + 8$ (c) $x^2 2x 4$ (d) $x^2 2x + 4$

 $(p^{\frac{1}{2}} + q^{\frac{1}{2}})(p^{\frac{1}{2}} - q^{\frac{1}{2}}) =$ 5.

 $(\chi^2 - 2\chi + 4)(\chi + 2)$

- (a) 2pq (b) -2pq (c) p + q

The nth term of a sequence is $2 - (1 - \frac{3}{n})^2$. The first three terms are 6

- (a) 2, 1, -2 (b) 2, -3, -8
- (c) 1, 2, 1
- (d) 2, 5, 10

3 - 26 722 8 x - 5 Let x * y = x - y. If k * 5 = 3 * k, then k = 3 * k

- (a) 0
- (b) 2
- (c) 4
- (d) 6

 $(4)^{-1\frac{1}{2}} = \frac{12}{4^{12}}$

- (a) $\frac{1}{2}$

The graph of $f: x \to (1-x)(x-3)$ could be

(b)

(c)

If $R = \{(p, p) (r, r) (p, q) (q, p) (,)\}$ is a transitive relation on a set $\{p, q, r\}$, 10. the missing couple is

- (a) (q, q)
- (b) (p, r)
- (c) (q, r) (d) (r, p)

11. The three-point moving averages for 1, 2, 3, 4, 5, 6 are

- (a) 0, 1, 2, 3 (b) 1, 2, 3, 4 (c) 2, 3, 4, 5 (d) 3, 4, 5, 6

12. $f: x \to 7x + 3$. Then $f^{-1}(3) = \frac{x-3}{2}$

- (a) 24 (b) 7
- (c) 0
- (d) $\frac{1}{7}$

- 13. If $\log_x(\frac{1}{4}) = 4$, then $x = \frac{1}{4}$
- (a) $\frac{1}{2}$
- (b) 1
- (c) 2

- 24=4 X
- The elements of the sets P, Q, R are shown. Then $P \triangle Q \triangle R =$

- (a) $\{p, q, r, w, y, z\}$ (b) $\{p, r, z\}$

 - (c) $\{p, r, x, z\}$ (d) $\{q, w, x, y\}$

- If $x = \frac{3y+3}{z}$, then $y = \frac{2z-3}{3}$ (a) $\frac{xz}{3} 3$ (b) $\frac{xz-3}{3}$ (c) $\frac{xz}{3} + 1$

16. $\{-2, 3\}$ is the solution set of

- (a) $x^2 x 6 = 0$
- (c) $x^2 + x 6 = 0$

- (b) $x^2 5x 6 = 0$
 - (d) $x^2 + 5x 6 = 0$
- On a certain day IR£ = \$1.631 and \$1 = γ 141 (γ means a Japenese yen). 17. number of yen in IR£1 is

- (a) 1.631 X 141

- (d) 142-631

A solid rectangular block, 3 X 3 X 4 is horizontal. A vertical cut along xy halves the block. The surface area of each half is

- (a) 48
- (b) 36
- (c) 33
- (d) 15

, this could be the graph of

- (a) x^2
- (b) $x^2 1$ (c) $x^2 + 1$ (d) $(x 1)^2$

20. The values of x for which (x - 1)(x + 2) > 0 are

(a) -1 < x < 2

(b) -2 < x < 1

- (c) x < -2 and x > 1

(d) x > 1 and x > -2

MATHEMATICS - HIGHER COURSE - PAPER II

5 x 13 = 75

SECTION B (200 marks)

Attempt QUESTION 1 and THREE other questions

- 1. (a) If $p = \sqrt{q^2 \frac{1}{r}}$, find the value of p, as accurately as the Tables allow, when q = 5.252 and r = 0.055.
 - (b) 510 litres of a mixture of petrol and water contained 7.75% by volume of water. Some petrol evaporated leaving a mixture containing 8.5% by volume of water. How many litres of petrol evaporated?
- 2. (a) Factorise and solve for x:

$$12x^2 - 28x + 15 = 0$$
.

Find four values of x for which

$$12p^2 - 28p + 15 = 0$$
 where $p = x - \frac{1}{x}$.

- (b) If $x^2 3x + 2a = 0$ has two identical values of x i.e. equal roots, find (i) the value of a (ii) the corresponding value of x.
- (ii) the corresponding value of

3. (a) $\mathbf{R} = \{(2, 4), (3, 2), (4, 3)\}.$ Write down the couples of

S is a relation such that the couples of $S \circ \mathbb{R}$ are $\{(2, 2), (3, 3), (3, 1), (4, 1)\}$. Write down four couples of S.

(b) $f: x \to 4x + 6$ and $g: x \to \frac{x^2}{4} - 2$ are two functions defined for $x \in \mathbb{R}$.

Evaluate

(i)
$$f \circ g$$
 (1)

(ii)
$$g \circ f (1)$$

Find the values of x for which

$$f \circ g(x) = g \circ f(x)$$
.

4. f is the function $f: x \to 1 - x - x^2$, $x \in \mathbb{R}$. Draw the graph of f in the domain $-4 \le x \le 3$.

From the graph estimate.

- (i) the value(s) of x for which f(x) = 0.
- (ii) the value of h such that f(2.5) = f(h), $h \neq 2.5$.
- (iii) the value of k, such that f(k-x) = f(k+x) where k is on the X-axis.
- 5. The table shows the number of volunteers collecting between IR£6 IR£10, IR£10 IR£14, etc, on a flag day.

IR£	6 - 10	10 - 14	14 - 18	18 - 22	22 - 26	26 - 30
Volunteers	3	9	11	13	10	4

By using mid-interval values, estimate the total money collected. Find the corresponding mean. How many volunteers certainly collected more than this mean?

If 6-10 means ≥ 6 and < 10, etc, calculate the minimum total that could have been collected.

During a conversation some days after counting the money a committee member could not recall the exact total collected, but said it was one of two amounts: IR£920.50 or IR£819.50. Write down the correct amount collected and say why this is your choice.

- 6. (a) 50 girls answered a questionnaire on whether they played tennis, comogie or hockey. The following were the results:
 - 7 played tennis only.
 - 10 played comogie only.

 - 4 played hockey only.
 3 played none of these.

Some played all three games.

- 15 played tennis and hockey.
- 14 played hockey and comogie.
 - 9 played comogie and tennis.

Calculate how many played many how longer to south a few south one

- (ii) tennis and hockey only?

Illustrate your answers by inserting appropriate numbers in a Venn diagram.

- If $\log_a 8 = p$ and $\log_a 5 = q$ find in terms of p and q (b) (i) $\log_a 3\frac{1}{5}$ (ii) $\log_a \sqrt{20}$.
- 7. (a) Solve for x

$$\frac{4x-2}{(3x-1)(2x+5)} - \frac{1}{2x+5} = \frac{4}{3x-1}$$

(b) In a 60 km race, the last cyclist finished 20 minutes after the winner. The average speed of the last cyclist was 2 km/hour less than the winner's average speed.

Calculate the time taken by the winner to cycle the 60 km.

