MATHEMATICS - HIGHER COURSE - PAPER II (300 marks)

SECTION A (100 marks)

 $120_3 \div 12_3$ is

(a) 10_{ten} (b) 10₃ (c) 101₃

5 of a sum of money is IR£50. The sum of money in IR£ is

(a) 25

(b) 144 (c) $\frac{300}{12}$

If p:q=3:7 and q:r=3:7, then p:r is 3.

(a) 3:7

(b) 9:21

(c) 9:49

(0.4)2 lies between

(a) 0.4 and 1 (b) 0.2 and 1 (c) 0.1 and 0.2 (d) 0 and 0.1

If the radius of a sphere is doubled, then the volume of the sphere is increased x times. x is

(a) 2

(b) 4

 $(1 + \frac{r}{100})^2 = 1.44$. Then r is

(a) 20

(b) 2

(c) 200

7. Each term of a sequence is to be an odd number. The nth term is

(a) n + 1 (b) 3n

(c) 3n + 1 (d) 2n + 1

8.	If $\#$ A is 7 and $\#$ B is 5, where A, B are sets, then $\#$ (A \cap B) can <u>not</u> be
	- (a) 0 (b) 3 (c) 5 (d) 7
9.	Which of the following is not a function?
	(a) $\{(p, p), (q, q), (r, r)\}$ (b) $\{(p, q), (q, q), (r, q)\}$
	(c) $\{(p,p), (q,r), (r,p)\}\$ (d) $\{(p,p), (p,q), (p,r)\}\$
10.	The set of values of x for which $(3x + 2)(3 - 2x) = 0$ is
	(a) $\{-1\frac{1}{2}, -\frac{2}{3}\}$ (b) $\{1\frac{1}{2}, -\frac{2}{3}\}$ (c) $\{1\frac{1}{2}, \frac{2}{3}\}$ (d) $\{-1\frac{1}{2}, \frac{2}{3}\}$
11.	8 1 1 is
	(a) 16 (b) 10 (c) 2 (d) $\frac{64}{3}$
12.	$\log_{x} p^{\frac{3}{2}} = 3. \text{ Then } x \text{ is}$
	(a) $p^{\frac{1}{2}}$ (b) $p^{-\frac{3}{2}}$ (c) $p^{\frac{9}{2}}$ (d) p^{18}
13.	Two taps together fill a bath in 9 minutes. One tap flows twice as fast as the other. The slower tap alone would fill the bath in y minutes. y is
	(a) 12 (b) 18 (c) 27 (d) 3
14.	$(x^6 - 1) \div (x^2 - 1)$ is
	(a) $x^3 + 1$ (b) $x^3 - 1$ (c) $x^4 - x^2 + 1$ (d) $x^4 + x^2 + 1$
15.	If $f: x \to x - 2$ then a sketch of f^{-1} is
	COLVEY 1990 A
.898935	(a) (b) (c) (d)
16.	If $A \cup B = \{1, 2\}$ and $B \cup C = \{2, 3\}$, then $A \cap B \cap C$ can be
	(a) {2} (b) {2,3} (c) {1,2,3} (d) {1}
17.	If $f(x^2 + 7) = 2x^2 + 7$, then f is $x \rightarrow$
	(a) $2x - 7$ (b) $2x^2$ (c) $2x^2 + 7$ (d) $x + 7$
18.	If $w = \frac{t-2v}{7}$, then v is a superficient for each v in the superficient v
	(a) $7w - t$ (b) $\frac{t - 7w}{2}$ (c) $\frac{7w - t}{2}$ (d) $\frac{7w}{t - 2}$
19.	The range of values of x for which $(x-1)(x+2) < 0$ is
	(a) $-2 \le x \le 1$ (b) $x < -2$ and $x > 1$
	(c) $-2 \le x < 1$ (d) $-2 < x < 1$
20.	Let $u * v = (u + v)(u - v)$. Then $u * v = 0$ always implies
	(a) $u + v = u - v$ (b) $u = 0$ and $v = 0$
	(c) $y = 0$ or $y = 0$ (d) $y = y = 0$

MATHEMATICS - HIGHER COURSE - PAPER II

SECTION B (200 marks)

- 1. (a) The water surface in a canal lock is 21 m in length and 10 m in width. The level of water is raised 3.5 m in ten minutes by a flow of water into the lock. Calculate the rate of flow in litres per second.
 - (b) Using tables, P.20 P.27, or otherwise, evaluate as accurately as the tables allow

$$\sqrt{\frac{1}{t} + \sqrt{u} + w^2}$$

where t = 0.2959, u = 841 and w = 6.856.

- 2. (a) Factorise
- (i) $x^2 49$ (x + 7(x 7)(ii) $8x^3 27$ $x^2 7x + 9x 49$
- (iii) $6x^2 29x + 28$
- (b) Evaluate x in each of the following, giving your answers correct to one place of decimals
 - (i) $3x^2 + x 1 = 0$
 - (ii) $3(x + 1)^2 + x = 0$
- 3. f is a function defined on R:

$$f: x \to ax^2 + bx + c.$$

If f(0) = 1, find the value of c.

If f(1) = 0 and f(-1) = 0, find the value of a and the value of b.

g is another function defined on R:

$$g: x \to x - 1$$
.

(ii) fg(x) in terms of x, where gf and fg are composite functions. Express (i) gf(x)Indicate on the number line the set of values of x for which

$$fg(x) \ge gf(x) + 3.$$

- 4. Using the same axis and the same scales draw graphs of the functions
 - (i) $f: x \to 4x^2 + 8x 5$
 - (ii) $g: x \to 2x + 5$

in the domain $-3 \le x \le 1$, $x \in \mathbb{R}$.

Using the graphs, or otherwise, estimate

- (i) the values of x for which f(x) g(x) = 0
- (ii) the range of values of x > -2 for which f(x) + g(x) > 0
- (iii) the maximum value of f(x) + g(x).
- 5. (a) Find the solution set of

$$\frac{1}{x+1} - \frac{3}{x^2 + 3x + 2} = \frac{1}{2x(x+1)} , \quad x \in \mathbb{R} .$$

(b) Let $p = \log_{10} 3$ and $q = \log_{10} 2$.

(i) p + q and p - q in the form $\log_{10} n$.

Express (ii) $(\log_{10} 16 + \log_{10} 15)$ and $\log_{5} 6$ in terms of p and q.

6. The number of cars rented out in each of nine months by a firm is:

Jan.	Feb.	March	April	May	June	July	Aug.	Sep.
30	26	34	30	53	61	81	89	46

- (i) Calculate the mean number of cars rented out per month.
- (ii) Draw a trend graph of the monthly rentals, taking the months along the horizontal axis.
- (iii) Calculate the difference between the rentals in each month and the mean. Find the sum of these differences.
- (iv) After how many months was half the nine month total of rentals completed ?
- (v) On the same graph as (ii) draw the graph of the three point moving average of the monthly sales.
- 7. Write an equation expressing distance in terms of speed and time.

A cyclist races a measured distance downhill in 40 seconds and the same measured distance uphill in 120 seconds.

If the speed uphill is 19 km/hr slower than the speed downhill, calculate both speeds.