AN ROINN OIDEACHAIS

INTERMEDIATE CERTIFICATE EXAMINATION, 1963.

MATHEMATICS — GEOMETRY.

MONDAY, 10th JUNE. — Morning, 10 to 12.30.

The total number of questions answered should not exceed six.
Mathematical Tables may be obtained from the Superintendent.

1. Prove that the three angles of a triangle are together equal to two right angles.
 ABC is a triangle in which AB = AC and \(\angle BAC = 20^\circ \). P and Q are two points on
 AB and AC, respectively, such that \(\angle DCP = 30^\circ \) and \(\angle CBQ = 20^\circ \). Prove that BP = BC, that
 BC = BQ and that \(\angle PQB = 60^\circ \).

2. If a straight line be drawn through the middle point of a side of a triangle parallel
 to another side, prove that it will bisect the third side.
 In a triangle ABC, X is the middle point of AB and N is the foot of the perpendicular
 from A to BC. Prove that XB = XN.

3. What is the locus of all points equidistant from two intersecting straight lines?
 Give a diagram.
 Show how to find a point inside a triangle ABC such that it is equidistant from the
 three sides. If a circle drawn with that point as centre cuts the sides, show that it
 cuts equal sections from the three sides.

4. Prove that the area of a triangle is half the area of the rectangle on the same base
 and of the same altitude.
 P is a point inside a square ABCD such that \(\angle DPC = 90^\circ \). Prove that the area of the
 triangle ADP is half the area of the square on DP.

5. Prove that the angle at the centre of a circle is double an angle at the circumference
 standing on the same arc.
 A, B, C are three points on the circumference of a circle of centre O and radius r,
 and \(\angle BCA = 60^\circ \). Show that the length of the perpendicular from O to AB is \(\frac{r}{2} \).

6. In a triangle ABC the internal bisector of the angle BAC cuts BC at D. Prove that
 BD : DC = BA : AC.
 ABC is a triangle in which AB = AC and \(\angle BAC = 90^\circ \). E is a point on BC such that
 \(\angle BAE = \frac{1}{2}\angle EAC \). Find in simplest surd form the ratio of BE to EC.

7. A ladder leaning against a vertical wall makes an angle of 60° with the ground, and
 the top of the ladder is 5 feet from the ground. Find how far the bottom of the ladder
 is out from the wall.
 Construct a triangle ABC such that \(\sin A = \frac{1}{2}, \tan C = \frac{12}{5} \) and the perpendicular from
 B to AC is one inch long. (Protractor may not be used.)
 Write down the value of (i) \(\cos A \), (ii) \(\sin C \).

(30 marks.)

(30 marks.)

(30 marks.)

(35 marks.)

(35 marks.)

(35 marks.)

(35 marks.)

(35 marks.)

(35 marks.)