1. (a) Simplify \((1) \left(64\right)^{\frac{2}{3}} \); \((2) 11^0\); \((3) \frac{1}{2^-3}\).
(b) Four similar smaller castings are the same weight as three similar larger castings. Calculate the weight of a smaller casting if all 7 weigh 12 lbs.
(c) Simplify \((2a - b)^2 - a(3a + b) + 3ab\).
(d) Write the correct number in place of "n" in each of the following:
 (1) \(225,000,000 = 2.25 \times 10^n\).
 (ii) \(0.0001 = 1.0 \times 10^n\).
(e) The sum of two numbers is to be subtracted from their product. Using \(x\) and \(y\) for the numbers and \(A\) for the result, construct a formula for this operation. Find \(A\) when \(x = 5\) and \(y = 6\).

2. (a) Simplify \(\frac{\frac{4}{5} - \frac{3}{8} \times \frac{12}{7}}{12 + 8\frac{1}{2} + 2\frac{1}{2}} \times \frac{5}{6}\).
(b) Simplify \(\frac{12(a^3 - x^3)}{a^2 + x^2} \times \frac{a + x}{a - x} + \frac{8(a^2 + ax + x^2)}{a^2 + x^2}\).

3. (a) Prove that the sum of the 3 angles of any triangle is equal to \(180^\circ\).

(b) In the above figure the angle \(DAB\) is a right angle and the angle \(ABC\) is twice as large as the angle \(ADB\). Calculate the number of degrees in the angle \(ABC\).

OVER
4. (a) Evaluate, using logarithms:
\[
\sqrt[31.2]{2.568 \times 0.2213}
\]

(b) If \(a = b^x \sqrt{\frac{c^2}{d}} \) then \(\log a = \ldots \ldots \ldots \ldots \)

(c) If \(\log 3 = m \) and \(\log 5 = n \) write down the logarithms of 15, 6 and 75 in terms of \(m \) and \(n \).

(12 marks)

5. There are 350 children enrolled in a school. Draw a graph which will enable you to express the number of children present as a percentage of the total enrolment.

Find from your graph:

(i) the percentage attendance when 275 children are present,
(ii) the number of children present on a day of 92% attendance,
and (iii) which corresponds to the better attendance, 325 children, or 96%.

(12 marks)

6. (a) If the volume of a right circular cylinder is \(704 \text{ cm}^3 \) and the perpendicular height is \(14 \text{ cm} \), what is the diameter of the base \(r \) ? (Take \(\pi = \frac{22}{7} \)).

(b) Calculate the total surface area of the above cylinder.

(12 marks)

7. Solve the equations:

\[
\begin{align*}
(1) \quad (3x - 19)(x + 2) &= (3x + 1)(3x - 2) \\
(ii) \quad 2x + 2y + 6 &= 0 \\
&\quad 3x - y + 3 &= 0 \\
(iii) \quad 3x^2 - 10x - 8 &= 0.
\end{align*}
\]

(14 marks)

8. (a) In the \(\triangle ABC \) the angles \(ABC \) and \(BAC \) are \(90^\circ \) and \(\alpha^\circ \) respectively. Show that:

(i) \(\sin^2 \alpha + \cos^2 \alpha = 1 \),

(ii) \(\frac{\sin \alpha}{\cos \alpha} = \tan \alpha \).

(b) If in the triangle \(ABC \), the angle \(B = 90^\circ \) and \(\sin C = \frac{4}{5} \), find without using tables \(\cos C \), \(\tan C \) and the area of the triangle \(ABC \).

(14 marks)

9. Factorize the following:

(a) \(4x^2 - 6xy \).

(b) \(3ax + 3bx - 4ay - 4by \).

(c) \(6a^2 - 7ac - 3a^2 \).

(d) \(8x^3 + 27y^3 \).

(e) \(a^2 - 2ab + b^2 - c^2 \).

(14 marks)

10. On \(\frac{1}{16} \) inch graph paper, plot the four points \(A, B, C, D \) whose co-ordinates are \(A(2,3), B(8,12), C(0,9) \) and \(D(12,0) \). Join \(AB \) and \(CD \).

Write down the co-ordinates of the point of intersection of \(AB \) and \(CD \). Find the equations of the lines \(AB \) and \(CD \) in the form \(y = mx + c \).

(14 marks)