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INTRODUCTION

These Notes have been produced for two main reasons:

-~

+ to provide teachers of Leaving Certificate Mathematics courses with some
background information which may help them in teaching less familiar areas
of the courses;

e to suggest mathematical approaches which may be more direct, or more
complete, or more accessible than some of the approaches customarily used

\__in schools. /

. The Notes were originally prepared by the NCCA Course Committee while it was developing
the courses. Among the design principles that the Committee used — principles which were
set out in the booklet The Leaving Certificate: Mathematics Syllabus (pp. 3-4) and also in the
Draft Guidelines for Teachers for the Foundation Course (pp. 9-10) — were requirements
that the courses should be teachable and learnable, and that the mathematics should be sound.

+ For the courses to be teachable and learnable, they have to be short enough to be addressed
in the time available; so the Committee looked for quick routes to important results. The
proof of the Factor Theorem without using the Remainder Theorem is an instance.

* Also, the work must be presented at a level appropriate to the students; so difficult topics
need to be addressed, where possible, in a comparatively simple way. An example in this
case is the systematic method offered for finding the solution sets for inequalities.

Moreover, where material is unfamiliar to teachers, a more thorough presentation may be
helpful. This has been provided most notably for transformation geometry (which occupies
a major part of the booklet), but also for difference equations and probability.

As regards the soundness of the mathematics, it was observed that the traditional
presentation of some topics is slightly incomplete; in such cases teachers — or able
students — might appreciate a fuller treatment. The derivative of Vx is an example.

Thus, the emphasis is on the mathematics of various parts of the courses. It is not the main
Purpose of the Notes to indicate exactly how the various topics might be taught. However, in
Some cases, suggestions about teaching methods are also included. Fuller considerations of
Methodology for the Higher and Ordinary courses should appear in the forthcoming Guidelines
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for Teachers (an accompanying volume to the draft Guidelines already produced for the
Foundation course, and intended to promulgate some of the good practice that has developed in
the years in which the courses have been running).

The Notes have had a limited circulation for some time; but the representatives of the Irish
Mathematics Teachers’ Association on the Course Committee felt that they could be made more
widely available as a resource, SO the Association and the NCCA have cooperated in producing
this booklet. It is the second publication issued jointly by the IMTA and the NCCA,; it follows
the Specimen Questions brought out in Spring 1994. The IMTA hopes that the booklet will be
of use to its members and to mathematics teachers throughout the country. The Association
Jooks forward to further collaboration with the NCCA and other bodies at it seeks to support
teachers of mathematics working to provide the best possible mathematical education for the
students in our schools.

Acknowledgments
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Most of the material was devised and drafted by Professor Paddy Barry; the form in which it is
presented is due largely to John Evans, who not only contributed to the writing process but
also prepared the text and graphics for the printers. Their inspiration, and their commitment to
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PART A

HIGHER LEVEL

GEOMETRY




CORE TRANSFORMATION GEOMETRY

The students should be familiar with the following elements of co-ordinate geometry, both
from their Junior Cert. course and the material which makes up the core Line section of the
[eaving Certificate course.

Distance between two points.
Midpoint of a line segment.
Slope of a line through two points.

Area of a triangle with one vertex at the origin.

Area of any triangle given the co-ordinates of the vertices.

Area of a parallelogram ( as the sum of the areas of two triangles or otherwise).
Area of a square.

Area of a rectangle.

Equation of a straight line:

v=(slope)x +c¢

=¥ =(slope)(x - x,)
ax+by+c=0 where the slope = —g

Test for a point being on a line.
Tests for lines being parallel or perpendicular.

Perpendicular distance of a point from a line - use of formula - significance of sign.

(Matrices are not compulsory for this section, but they can be useful).

X
The point (x,y) as the vector ( j .
.\)

The transformation f: (x,v) = (x ’,v ") represented by the equations :
x =ax+by

vy’ =cx+dy
_ s bl
as the transformation f: -,
\ y

represented by the matrix equation
x* a b\ x
v’ e d\y)

Calculation of the inverse of a matrix.

Parametric equations of a line and line segment (dealt with below).




Introduction of the topic

The introduction of this topic may provide a useful opportunity to revise co-ordinate geometry -
especially the concepts listed above. In addition, basic skills in matrices can be reviewed as
well.

Transformations

The transformations we will deal with act on points of the plane.

If we want a transformation f to act on some point p, whose co-ordinates are (3,2) , we have to
describe what £ will do to the x co-ordinate (3) and to the y co-ordinate 2).

In general we will describe a transformation f as acting on a point p(x,y) and sending p to an

image point called p’ ( or f(p) ) where the coordinates of p’ are (x’,y’).

How do we know what these new coordinates are?
Example:
The transformation f maps (x,y) to (x’,y ") such that
x’'=3x+2y
y'=x-y
Find the image of the points p(5,-2) , q(-1,-4) and 0(0,0).
Solution (1):

The calculations may be done directly. Take p(5,-2) for example.
The x co-ord is 5 and the y co-ord is -2. Thus x=5 and y=-2.

Applying the equations we obtain x' = 3(5)+2(-2) = 11
andy'= (5)-(-2)=7.
So p(5,-2) is mapped under ftop'(11,7)
or
p(5,-2) is mapped under f to f(p), whose co-ordinates are (11,7).
We can now repeat this process to the points q and o.
Solution(2):

We represent the transformation f as a matrix acting on a vector to produce an
image vector.

The matrix is easily obtained.

The transformation equations given to us were: 3x + 2y
1

x -1y

xv
yl




so f may be represented as

i3 )
i acting on the vector e

If we wish to obtain the image of p(5,-2) we treat p as a vector and multiply by
the transformation matrix:

3 2Ys5) (11
1 -1\-2) \7
A particularly useful property of the matrix approach is that the images of

several points can be calculated very quickly.

The three points given to us above were p(5,-2) , q(-1,-4) and 0(0,0). We may
deal with these all at once by forming a 2x3 matrix

5 -1 0
2 40

and multiply this by the transformation matrix

3 25 -1 0) (11 -11 0
1 -1A2 4 0/ 7 3 o0

giving the image vectors

() =(5) ()

or, as points, p'(11,7) , q'(-11,3) , r'(0,0).

(not to scale)




Now what is it we have to do in the Core?

What is in the Core Transformation Geometry?

*Each transformation f of the plane I which has the coordinate form

(x,y) = (x",y") where

x'=ax+by
y =cx+dy
and ad—bc#0 ,

maps each line to a line, each line segment to a line segment, each
pair of parallel lines to a pair of parallel lines, and consequently
each parallelogram to a parallelogram.

Proof confined to a specific transformation (numerical values
fora, b,c,and d) .

Examples of the invariance or non-invariance of perpendicularity,
distance, ratio of two distances, area, and ratio of two areas connected
with specific parallelograms (including rectangles and squares) under
transformations of the form

x'=ax+by

y =cx+dy

with numerical coefficients.

We propose to deal with some of the last paragraph of material first, as students may find this
quite easy to do, and be better prepared for the quite subtle ideas needed to understand the
proof section set out in the first paragraph.

It should be noted, however, that a certain care should be taken with the language we use at
this stage. We will talk about a triangle whose vertices are the points p, q and r and the triangle
whose vertices are the image points p', q', and r' under some transformation. We may then
calculate the areas of these triangles and so on, but we are not saying that the image of the
triangle pqr is the triangle p'q'r' - the answer to that depends on the nature of the
transformation and what we understand a triangle to be - is it the set of points that make up the
sides? or these points plus the set of points in the interior? (All of these issues are addressed in
the OPTION on Further Transformational Geometry).

10




Compendium Question: (NB: equations of lines/line segments not used here)

Consider the points 0(0,0) , p(3.4) , q(-2,6) , r(-5,2) , s(4,-3) and the transformation f

where f: (x,y) = (x’,y ") and
where x "=3x—y
y =x+2y
Calculate the following and make a comment about invariance/non-invariance under f:
(i) tpqland Ip'q'l { orlf(p(q) ! }
Solution:

After reading through the question we see that we need the images of o,p,q,r,and s.

3 -1
Our matrix for the transformation is (l 5 )

7 ’ ’

op q r s o' p’q’" r’ s
(3 -1Y0 3 2 5 4 05 12 -17 15
1 20046 2 3 Tlo1rl 10 a1 2

Ipq!=V29 and| p’q’ 1 =v290 . As these are not equal then distance between points
is not invariant under f

(Remember that only one counter-example is required to disprove an hypothesis !)

(ii)  Calculate the following and make a comment about invariance/non-invariance
under f:

the ratio Jp_q| and the ratio LN Jor |f{P}f{q)|}

lgr] g | @)

Ipql=V29andlqri=5 and |p'q'|=290 and|q'r' | =V146.
The ratio of | pql to Iqgrl is 1.077033.... (EC)
The ratioof |p'q'l to 1q'r'lis 1.4093621...(EC).

As these ratios are not equal, then the ratio of distances between points is not
invariant under f.
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(iii) Calculate the following and make a comment about invariance/non-invariance

under f:
the ratio '—oﬂl and the ratio lo—i)—,' or M
i Ir ‘g | £(r)f(q)
Solution:

(iv)

lopl=5andlrgl=35 so their ratio is 1.
lo'p'l = V146 and Ir'q'|= V146 so their ratio is also 1.

This result does not establish invariance. Proof of an hypothesis needs a
theorem.

Perhaps we have been lucky with our choice of points. Perhaps there is
something special about these points .

(There is: they lie on parallel lines: see OPTION).

Calculate the following and make a comment about invariance/non-invariance
under f:

the area of the triangle whose vertices are are 0.p, and r; and the area of the
triangle whose vertices are o ,p andr {or f(0), f(p) and f(r) }.

Solution:

(v)

A with vertices o,p and r has area 13 units2.
A with vertices o', p' and r' has area 91 units2.

These areas are not invariant under f.

(And not just by accident either : the determinant of the matrix of
transformation £ is 7, and it can be shown (see OPTION) that
this represents the effect of the transformation as a multiplier

of the area of plane figures: here for example 13 x7=91).

Calculate and make a comment about invariance/non-invariance under
the following ratios:

the area of the A with vertices o,p and g

the area of the A with vertices o,p and r

the area of the A with verticeso ',p "and q’

the area of the A with verticeso ',p "and r y
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Solution:

A with vertices o, p and q has area = 13 units2.

A with vertices o, p and r has area = 13 units2.
Ratio is 1.

A with vertices o', p' and q' has area = 91 units2.

A with vertices o', p' and r' has area = 91 units2.
Ratio is 1.

Again the fact that these are the same is not a proof that ratios of
areas of plane figures are invariant.

(They are : for proof see OPTION).

(vi)

Calculate the following and make a comment about invariance/non-invariance
under f.

the area of the figure with vertices o,p,q and r and
the area of the figure with vertices o', p',q' and r' .

Solution:

(vii)

the areas are 26 units2 and 182 units2 respectively. So the area of such figures
is not invariant under f. (Again note : 7 x 26 = 182).

Calculate the following and make a comment about invariance/non-invariance
under f.

Investigate if the line through o and p is perpendicular to the line through
o and s. Is the line through o' and p' perpendicular to the line through
o'and s'?

Solution:

slope op is 4/3 , slope os =-3/4 , so they are perpendicular.
slope o'p' = 11/5 , slope o's' = -2/15 , not perpendicular.

So being perpendicular is not an invariant property under f.
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(viii) Calculate the following and make a comment about invariance/non-invariance
under f.

Investigate if the line through o and p is parallel to the line through r and q.
Is the line through o' and p' parallel to the line through r' and q' ?

Solution:
slope op is 4/3 and slope rq is 4/3, hence parallel .
slope o'p' is 11/5, slope r'q' is 11/5, hence parallel.
Again not a proof that pairs of parallel lines are mapped
to pairs of parallel lines under f (proved below as part of

the core for a specific transformation f).

The general case is proven in the OPTION.

The Theorems.

We have arranged the proofs as four theorems which correspond to the entry in the first
paragraph of the syllabus entry.

We need a few bits and pieces before we start, not least being some kind of motivation as to
why we need to prove that a line is mapped to a line at all!

A Pathological Case

Consider the line K: x +y = 0 . Take three points on K: 0(0,0) , p(2,-2) and q(-3.3).
Let f be a transformation of the plane.

K

We wish to make a distinction between the image of the line K under f (which could be
anything) and. the line that runs through or contains the points f(0), f(p) and f(q), providing
these three points are distinct and collinear.

Part of the trouble in seeing a difference between these is that as o, p and q belong to K, then
the points f(0), f(p) and f(q) must belong to f(K).
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However, this does not make f(K) a line, even if the points f(o), f(p) and f(q) are distinct and
collinear.

Let f be the transformation that maps (x,y) to (x', y') where

L 10x* , 10y*
= 2 5 =5 2
ol Yo+l (this is not a standard transformation)
Applying f to o gives f(0) = (0,0)

p gives f(p) = (8.8)
q gives £(q) = (9.9)

We can see at once that the image points are distinct and collinear.
If we draw a line through these image points we obtain the line x - y = 0. '
So is f(K) equal to the line x - y =0 ? The answer is No.

We can see this in a variety of ways. If more points are mapped we will see that their images
are trapped between (0,0) and (10,10).
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By examining the transformation equations we may see that x' and y' must always be positive,
so that all the points of X -y = 0 in the third quadrant are not image points of K.

In addition, we might ask which point of K has been mapped to (20,20)?

2 2
o, B0 op- 1
x"+1 y +1

Taking just the equation in x, we obtain
20(x* +1) = 10x
20x* +20 = 10x"

10x* = =20
xt=-2
x =+/-2  which is not a real number.

From all this we may conclude that the image of K is a portion of the line x - y =0, running
from (0,0) to (10,10) , which includes the origin but excludes the point (10,10).

There is a difference between f(K) and the line x - y = 0.

How do we know when a set of points is a line ?

A set of collinear points like { (0,0) , (1,1),(2,2) } isnot a line. The points may belong to a
line. This line has constant slope. If we calculate the slope of the line joining any two points of
our set we will get the same answer. Still our set is not a line.

The property we are trying to get hold of is a sort of glued-together-ness of the points which
make up a line. The set of real numbers R has this property. Indeed, the usual picture we draw
to show R is such a line - the real number line. There are no gaps in this line and all the strange
real numbers such as V2 , & , e have their place on the line. If we can show a one -to -one link
(correspondence) between a set of distinct, collinear points and R, then we will have shown
that our set is a line.

This could be done quite easily if we could find a way of describing each point in our set by a
unique real number. That is, for each real number there is a unique point of the set of collinear
points, and for each point of the set there is a unique real number.

The parametric equation of a straight line does this precisely. Each point on the line is

associated with a unique value of the parameter t , and t is an element of R. Contrariwise, for
each value of t there corresponds a unique point on the line.

16




Parametric equations of a straight line

Consider the straightlineL : x+my+n=0
If the point p, with co - ordinates (x,,y,) and the point p, with co - ordinates (x,,y,) belong
to L, then L may be written in parametric form as the set of points (x,y) such that

x=x +1(x, - x) . Y=Y+t -y) reR. ... *)

There are a variety of ways of introducing this approach.

Recall the equation of a straight line in the form y — y, = (slope)(x — x,)

and that slope = DS (R
Xy = X
L=y
hence y—y1='\* “L(x-x,)
Xy = X
hence YHh _X7hH (**)

Y= X=X

which gives the equation of a line, given two points (x;,y,) and (x,,y,) on the line.

[ 8% 45 45 sf % g0 45 of s gf 4% 4% &)

(AR OF NN BR BN NG NN RN AN NN NE NE NN NN BF MW NR RR NE MW RR BR NN RN BB UE NR NR RO MW UM BR N R I

Consider any point p(x,y) on the line through (x,y;) and (x2,y2). The co-ordinates (x,y) will
satisfy the equations given in  (**).

It is interesting to examine the meaning of the ratio given on each side of the equation (**).

As is shown in the diagram, we may choose to read (**) as a statement about the ratio of sides
in two similar triangles. As (x,y;) and (x2,y2) are fixed points, the lengths of the lines

marked with a === are fixed numbers. As p moves along the line, the lengths of the
lines marked with a nsisimimin change.
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If the ratio of the vertical broken line to the vertical solid line is say, 2:1, then the ratio of the
corresponding horizontal lines is also 2:1.

More importantly for our purposes, this ratio of 2 can be seen to uniquely define the point p.

By choosing a different ratio, say t:1. we can vary p as we wish. If teR. then we ensure thatp
varies over the entire unbroken line. This use of the ratio t as a parameter provides the form
shown in (*):

Let 2-N _X"% _t t€R
V=N XX

Taking the expression in y first :

LA _p = y-y=dn-n)
Y2 =N

i y=)’1+t(y2_))1)
Similarly,
));—-):1 =1 = x—x1=t(x2—x1)

= x=x1+t(x2—x1)

Giving the form of the parametric equations shown in (*).

A simpler motivating idea is to use a vector approach.

Any point p on the line ab can be expressed as the vector p , where

p=a+tab,tsR. ................ (&)
If p lies between aand b, then O s t = 1.
If p lies "beyond" b, then t >1.

If lies "before" a,thent <O .

18




0 e e
If o is the origin (O) and a is (y ] and b is (\r )
| 2

X, X X=X
aevens (- ()
en »  \»n) \m-n
Thus equation (&)

p = a + tab

e (]
where =
: Y

can be written as

giving the equations

x=x1+t(x2—xl) and y=y1+t(y2—yl), tER asin (*).

Let us be quite clear what we have established.

In order to ensure that a set of points p(x.y) is a line, we required a 1-1 correspondence
between the set of points and the real numbers R.

The claim here is that the parameter teR provides such a link.

Firstly, assume that a value of t, say t= 0. determines two points p and q with co-ordinates

(x,,y,) and (x,,y,) respectively.

Then from (*), the parametric equations, we have :

X, =X +oz(x2 —xl) and x, = x, +a()c2 —xl) =X, =X,

Similarly,

Y= +a(y2 —yl) and Yy =N +oz(y2 ‘)’1> =y,=)Y,

From which we conclude that the points p and g are the same point.

That is, each value of teR is associated with one unique point on the line.

19
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Secondly, assume that a single point p(x.y) is associated with two values of t, say t=c and
t=B.

From the parametric equations (*) we have:

X=X +oz(x2 —xl) and x=x +[3(x2 —x1)=>a =

or

y=y+a(y,-y) and y=y +Bn-n)=a=p

From which we conclude that each point is associated with one unique value of teR.

So there is a 1-1 correspondence between the set of points described by the parametric
equations of the line and the set of real numbers R. Consequently, we may say that
each set of points whose parametric equations are of the form (¥) is a line.

Line segments

Let the symbol [rs] indicate a line segment on L, the segment to contain its end points r and s.

All the points of [rs] also belong to L, so they may be written in parametric form.

If the co-ordinates of r are (x;,y1) and the co-ordinates of s are (X2,y2)
then the parametric equations of the line rs are

x =X, +1(x, - X)) . Y=+t -y) tER.

If we restrict the range of values of the parametertto Osts1, teR ,
we neatly obtain the parametric form of the line segment [rs]:

X =x +1(x, - x) , y=y +t(y,-y) Ostsl,t€R.

Examples:

1. p(-3,5) and q(6,-4) are points. Find parametric equations of the line pg.
Solution :

x,=-3 and y, =5, x, =6 and y, = -4

SO

x=x +t(x,—x)=>x=-3+1(6--3)=x= -34+9t
Y=y iy, ~n)=y=5+1(-4-5=y=5-%
where t ER.

x==-3+9t
y=5-9t

20




5. The line K has the equation 3x+2y-6=0.
Find parametric equations for K.

Solution :
Obtain two points on K.

If x=0 theny=3 giving (0,3).
Ify=0 thenx=2 giving (2,0).
x,=0 and y, =3, x,=2 and y,=0

SO

x=x1+t(x2—x1)3x=0+t(2—0)=>x=2t

y=y +t(y,-y)=y=3+1(0-3)=y=3-3 x =2t
where ¢t €ER. y=3-3t

3. Given r(-8,4) and s(1,8), obtain parametric equations for the line segment [rs].

Solution :

x,=-8 and yy=4, x,=1 and y, =8

SO

x=x +t{x,—x)=>x= -8+t(1--8)=x=-8+9¢

Yy=n+tnp-y)=>y=4+18-4)=>y=4+4

where O<st<l, rtER.

Check: ift=0thenx=-8andy=4
ift=1thenx=1andy=38.

x=-8+9t
y=4+4

NOTE:

A useful property of such parametric equations of line segments is that the co-ordinates of a
point w which divides |rs] internally in the ratio of say 3:4 can be quickly found by letting
=3/7 , or more generally, if the ratio is a:b, letting t=a/(a+b). The external case is dealt with as
follows: if a point divides |rs| externally in the ratio of a:b, then the point is obtained by letting
t=a/(a-b).

4. As one final step towards our four theorems, we now find the image of the line
K: 5x-2y+10=0 (say) under the transformation f we have used in our examples,

where f: (x,y) — (x',y’) and
where x '=3x-y

y'=x+2y

21



The first step is to express the line K in parametric form:

when x =0, y=35 giving (0,5)
wheny =0, x=-2 giving (-2,0)
x,=0 and y, =5, x,=-2 and y, =0

SO
x=x +1(x,—x)=>x=0+1(-2-0)=x=-2¢
)’=}’1+f(yz-y1)=>y=5+t(0—5)=>y=5—5t x =2t
where t €R. y=5-5t

We now apply the transformation f:

x'=3x-y=>x"=3-2t)-(5-5t)=x"'=-5-1t

y' =x+2y=>x"=(20)+2(5-51)=y ' =10-12¢

where 1 €ER.

These are parametric equations of a line, so K has been mapped under fto a line.
The standard equation of f(K) may be obtained as follows:
x'=-5-t=>t=-5-x"'

y'=10-12t=y ' =10-12(-5-x ')

=y ' =70+12x"'

=12x'-y ' +70=0 is the equation of f(K).

Introduction to the Theorems

In the following four ‘theorems’, we will use a specific transformation of the type set out in the
syllabus. All such transformations are well-behaved in that a line will be mapped to a line, a
line segment to a line segment, a pair of parallel lines to a pair of parallel lines and each
parallelogram to a parallelogram. (Full proof in the OPTION).

The transformation is f
where f: (x,y) —(x',y ) and
where x "'=3x-y
y'=x+2y

(NB : the determinant of the corresponding matrix is non-zero - what would it mean if the
determinant was 0 ?)
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Theorem 1.

proof:

f maps each line to a line

Let L be any line /x +my +n = 0 where neither I nor m is zero.

Choose any two points of L .

a giving (O,—l)
m m

Letx=0,s0y

andy= 0,s0x = -% giving (-%,0).

The parametric equations of L are now

x=0+t<-£—0\ =

1) m
n i x=—7
yooBfomon)onm
m\ m m m __n.m
where t ER. s

Applying the transformation f:

, ( tn) n tn n ( 3n n
x'=3l-—l+———=—+t-———-—
! [ m)

I m m m
that is, the parametric equations of the image of L under f
have the form
x'=p+iq
y'=r+ts
where t ER.
We conclude therefore that f(L) is a line. QED.
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Theorem 2. f maps each line segment to a line segment.

Proof:

Consider the line segment [rs] with r(x,, y,) and s(x,,,) twWo distinct points.
The parametric equations of [rs] are

x=x +tx, - x)

y=y+1(, =)

| with O<t=<1,tER.

Applying f :

x'= 3[x1 +1(x, ~ xl)]—[y1 +1(y, - yl)] = (Bx, - y) +1(3x, = 3x, =Y. * y)-
y ' =x +1(x, = X) +2[y1 +t(y, - yl)]= X, +2y + t(x2 -x, +2y, —2yl).
With 0=t =<1,t ER.

These are the parametric equations of the image of [rs] under f

and conform to the parametric equations of a line segment beginning
at the point obtained by letting t = 0 and ending at the point obtained by letting t=1. QED.

Theorem 3
Let L and M be lines, such that L and M meet at some point p.

Applying a transformation f. and using Theorem 1, L is mapped to a line L' = f(L),
and M is mapped to a line M' = f(M). Letp be mapped to a point p'=f(p).

As pEL thenp' €L’ .

Similarly, as p €M then p EM .
SopEL'NM .

Thus the lines L' and M’ meet atp' .
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Now letLII M.
Either L=M, in which case L'=M',

or LNM=03.
If the latter, then L' " M’ = & , which implies L' | M' .

Otherwise, if L' N M’ = g then the inverse map f™'
would map g to some point () such that f™'(q) ELN M,
which contradicts LN M = .

Ll

QED.

Theorem 4. f maps each parallelogram to a parallelogram

Proof:

We assume that f maps each line to a line, and each pair of parallel lines to a pair of parallel
lines.

N

G S

X N

Let L, K, M, and N be distinct lines.
Let L K and M Il N, and let pgrs be a parallelogram.
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|

f will map the lines L,K,M,and N to lines f(L),£(K),f(M) and £(N).
£ will map the pair of parallel lines LK to a pair of parailel lines £ (L),£(K).

£ will map the pair of parallel lines M,N to a pair of parallel lines f(M),f(N).
pEMN L= f(p)Ef(M)N (L)

gENN L= f(q) Ef(N)N (L)

rEKNN=1(r)ef(K)NE(N)

sEKN M= f(s) Ef(K) NE(M)

= f(p)f(q)f(r)f(s) is a parallelogram. QED.

Appendix

Alternative proofs:
Theorem 1 fmaps aline to a line
Let L be the line Ix + my + n=0.

3 -1
Now f is the transformation represented by the matrix (1 2)
x' 3 -1\/x
such that ( ) = ( )( )
y' 1 2/\y
3 -1\7/x' 3 -\ (3 -Iy/x
—1 =
(1 2) (y) (1 2] (l 2)(y)
1/2 NI\/x' 1 O\/x
=> —_ ]
7(-1 3)(y ) (0 1)(y)

(2 1
-
= -
[i E}y’ y
T 7
= gx'+— "=x and —lx’+— "=
7% 7Y R DA

Applying the transformation fto L: Ix + my + n =0,

we find that the set of points f(L) satisfy the equation
JT(Er:'+l ’)+m( —lx'+E ’)+n—0
T 7% Y )T
2!—:11) [ L+3m)
or —x'+ "+n=0 B
( 7 )T ¢

Consider the line whose equation is (* * *).

Let a point of this line be (x ',y ).
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Then there exists a transformation given by the equations

'=3x-y, Y "= x +2y which maps (x ',y ") as follows:

21~ (L+3m\. -
( 7m)(3x y)+ S )( +2y)+n=0

___,(21_m)(3x—y)+(l+3m)(x+2y)+7n=0
= 6lx - 2ly =3mx + my +Ix +2ly +3mx + 6my +Tn =0
= Tix+Tmy+7Tn=0

=x+my+n=0

i . 2] - \ { 1+3m)\

i h point of the line ( "+n=0
ettt \"7 ST )

may be mapped to the line L: ix +my+n=0.

Thus f maps each line to a line. QED.

Theorem 3. fmaps each pair of parallel lines to a pair of parallel lines

Proof:
We assume that f maps each line to a line.

Let L and K be two parallel lines.
If L =K, then f(L) = £(K) and f(K) Il f(L).
Otherwise, letL:lx+my+n=0 and K:lIx+my+v=0.

-1
Now f is the transformation represented by the matrix (1 2)
x B 3 -I\/x
such that ( ) = ( )( )
y' 1 2/\y
3 -0\7rx'y (3 -1\ /3 -Iy/x
= E ]
b2 G- 0a) G2))
1/2 NI\/x' 1 O\/x
=> . =
#1350 1))

(2 1)
7 7 x, _ X
= | EJ(y’)_(y)
7 7
= —2—x’+l ‘=% and —lx’+2 "=
7% 7Y 7
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Applying ftothe lineL: Ix+my+n=0

: 2 Ly, (1 3 )
btain l/—x’+— Ytmi-=x"+=y' | +n=0
weobRIn A Y )T T Y

Applying fto the line K: Ix+my+v=0

. 2 1 \ [ 1 3 \
we obtain l/—x’+— NTeml——x"+=y'V+v=0
\7* )T T TS

Without further rearrangement we can see that the slope of f(L) and

the slope of f(K) will be equal.

As f(L) are f(K) are lines, then f(L) Il f(K) QED.
OR using parametric equations

Theorem 3 f maps each pair of parallel lines to a pair of parallel lines
Proof

Assume that f maps each line to a line.

Let L be any line [x +my +n = 0 where neither I nor m is zero.

Let K be any line [x +my +v = 0 where neither / nor m is zero.
That is, L and K are a pair of parallel lines.

If L=K, then f(L)=f(K) and f(L) Il f(K) .

Otherwise. let L and K be distinct parallel lines.

Choose any two points of L .

Letx=0,s0y = - giving /0,_f_\
m m)

n n
andy= 0,s0x = -— givin {——,0\.
: . EEESH Sl

The parametric equations of L are now

x=0+l‘(—£—0\=—ﬂ
Vo) ”
) eI
y=_’_l+t/0__£\=_£+_
m \ m/ m m : n+tn
where t ER. = m m

Applying the transformation f:

_x’=3{_t_n\+l’l__t_n=_’1+t(_§£_£\
\ 1) m om m v m)

, tm 2n  2tn 2n ( 2n n\

y' =————t— =+t — =
[ m m m \m 1)

which are the parametric equations of the line f(L).
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er to obtain the slope of f(L), we let t=0 and t=1 to obtain two points with which to

ord
E:ilculate the slope.
btain (i _E)
If t =0 we obta =
btain (?ﬂ _g)
[ft=1weobta Tl
Applying the slope formula, we obtain the slope as
2n . n 21
nm 3,£ & lm 31 (the n cancels out)
—+— — 2
m 1 —

so the slope of f(L) = ;n =2

m+1

Repeating the same process for K, we obtain parametric equations for f(K) and obtain for the
slope of the line f(K) the expression:

.,y 2.1
vm 35 = {? ! 33 (the v cancels out)
m L om 1
so the slope of f(K) = - 2
3m+!
that is, the line f(L) is parallel to the line f(K). QED.

NOTE: in the proofs of some of these theorems we used a technique from matrix algebra to
obtain from the transformation equations expressions for x in terms of x' and y', and for y in
terms of x' and y'. We then substituted into the equations of the lines L and K to obtain the
equations of their images under f.

Why can this technique not be used all the time?

The answer is that using such a method, we obtain an equation which the image points of the
line must satisfy. However, this does not prove that the image of the line is a line, and not
simply a set of collinear points. To show this, we must demonstrate that we can map each
element of the line whose equation we have obtained back to our original line. (Look back at
the section called A Pathological Case - we tried to map the point (20,20) back to our original
line and couldn’t do it. In this way we demonstrated that the image of the line x+y=0 under f

IS not a line).

We are permitted to use this technique in Theorem 3 because we have proved in Theorem 2 that
the transformation in question maps a line to a line. Such an assumption is surely permitted in
the examination, otherwise the students are being asked to prove TWO theorems!
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Solution to Leaving Certificate Question
Leaving Cert. 1995 Paper I Q 3(b) and Q3(c¢)

(b)
f is the transformation (x,y)— (x",y') where —x'=3x-y y =x+2y
For points p(0,0), g(1,0) and r(0,2) find f(p), f(9), and f(r).
Investigate if i lgrl= |F (@ f)
(ii) the area of the triangle pgr is equal to thge area of the
triangle f(p)f(9)f(r)
()

I is a line with equation ax + by + ¢ =0. Prove that the image f(L) is also a line,
where fis the transformation in (b).
M is a line with equation ax + by +d =0. Deduce the equation of f(M).
Show f(L)Il f(M).
Solution (b)
3 -1\y/0 1 0 0 3 -2
(1 2)(0 5 2] = (0 . 4) = f(p)0.,0), £(g)(3.1) and f(r)(-2.4)

lgr| =5 \f(@)f(r)] = J34 = notequal

areaAprg = lunit® and  areal F()f(@f(r) = 7 units’

) 1
[ using Elxzy1 - xlyzl |
= not equal

(NOTE: the determinant of the transformation is 7 - a useful check here ).
(¢) Proof:

Let L be any line ax +by +c = 0 where neither a nor b is zero.

Choose any two points of L.

¢ ... (o S\
Letx=0, so = -— 9olvin 0,-—
Y=oy BT

andy= 0,s0x = . giving /-E,O\.
a \a’)

The parametric equations of L are now

c=0sr[So0) =K
\ b

] a

where t ER.




Applying the transformation f:

,(tc)(ctc)c(?)cc)
x'=3-——|-[-—+—|=—+t{ -——-—
a b b/ b a b
, tc c tc 2¢c ¢ 2c\
y'= ——+2(——+—) = ——+t(——+—
a b a b
that is, the parametric equations of the image of L under f
have the form
x'=p+iq
y'=r+ts
where t ER.
We conclude therefore that f(L) is a line. QED.
By examination of the foregoing, we deduce that f(M) is also a line,
with parametric equations

We can obtain two points on f(L) and calculate its slope.
We can do the same for f(M) and then compare answers to see if the two image lines
are parallel.

2a-b

—a—3b

Note on the use of parametric equations

Students who have been prepared using the parametric approach would need to know how to
calculate the inverse of a given transformation. Although they do not require this technique for
the proofs of the theorems, they need it for more elementary calculations such as the following:

We obtain the slope of each line to be

= f(L) I f(M)

Given the transformation f : (x,y) - (x’,y’) where x'=3x-y y =x+2y,
find an expression for the inverse transformation ™', and hence find f™'(p),
where p is the point (7,-14).

Solution :

The action of f on a point (x,y) can be represented in matrix form as follows:
3 -I\/x x' @)
(1 2)(y) ) (y)

3 -1
We calculate the inverse of the matrix ( ) = %

2 1
| 2 ( 3) and multiply (LHS) each

-1
side of (&) to get
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—
1/2 I\/3 -1\(x 1/72 N\/x
7(—1 3)(1 2)(y)'7(—1 3)(y')
2 1 2,1,
. 1 0\/x {7 7\x' x (7x+7y\
== (o 1)()= 1 3() - ()= 1,3
Yy = ZI\) y __x’+._.y’
7 ) 7
= X= —2-x’+l " and ———l—x'+-— ]
7)’ y 7 7)’

showing how £~ maps (x',y')—(x.,y)

Hence f~'(p) is found through calculating (x,y) by substituting x' =7 and y'=-14 to

obtain f7'(p) as (0,-7)
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FURTHER GEOMETRY
Consider the following problem :

prove that the tangents at the endpoints of a diameter of an ellipse are parallel.

Assume that it has already been established that

() there is a transformation f that maps a unit circle, centre (0,0) to the ellipse
x2 v2
5tz =1
a” b

and a transformation f-1 which maps this ellipse back to the circle

(i) the transformation f-1 maps any diameter of the ellipse to a diameter of the
circle, and f maps any diameter of the circle to a diameter of the ellipse

(iii)  the transformations fand f-1 map pairs of parallel lines to pairs of parallel
lines.

(iv)  the transformations fand f-1 map a tangent to a tangent

Then we may argue as follows:

/

The diameter (and endpoints) of the ellipse is mapped under f-1 to a diameter (and endpoints)
of the circle. The tangents at the endpoints of the diameter of the ellipse are mapped to the
tangents at the endpoints of the diameter of the circle.

The tangents at the endpoints of the diameter of a circle are parallel.

The transformation f maps these tangents to the circle back to the original tangents to the
ellipse.

The transformation f maps pairs of parallel lines to pairs of parallel lines.
Consequently, we may deduce that tangents at the endpoints of a diameter of an ellipse are
parallel.
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The syllabus describes this approach as “deduction from results for a circle of similar results
for an ellipse”. The results deal with

(a)
(b)
(©)
(d)

(e)

the centre of an ellipse
tangents at the endpoints of a diameter of an ellipse
locus of midpoints of parallel chords of an ellipse

locus of harmonic conjugates of a point with respect
to an ellipse (pole and polar)

areas of all parallelograms circumscribed to an ellipse
at the endpoints of conjugate diameters.

In setting out deduction (b) it was assumed that three items had already been established. The
first item concerned the transformation f that maps a unit circle, centre (0,0) to the ellipse

This transformation f is simply

X

¥

1

and substituting for x and y in

gives

The transformation f-1is

X

yl'

and substituting for x and y in

gives

a

as required.

= X/a with X = ax

The second and third items assumed to have been established concerned properties (being a

diameter, being a pair of parallel lines) that were carried over intact by fand f-1 . That is,
properties that were invariant under either transformation.

One way of proceeding to deduce the results (a) to (e) is to thoroughly examine which
properties (in particular, the ones we need for our deductions) are invariant under the given

transformations f and f-1 .
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Alternatively, we may consider which geometrical properties are invariant under a general type
of transformation, the affine transformation of which f and f-1 happen to be examples.

1t is this latter route which is indicated by the syllabus:

s

Transformations f of the plane [ which have the co-ordinate form
(x,y) = (x",y") where :
x'=ax+by+k
y =cx+dy+k,
and ad —bc #0.

Use of matrices.

Magnification ratio. Invariance of ratio of lengths on parallel lines.
Invariance of centroid of a triangle.

Invariance of ratio of areas.

It may be useful to consider what work the syllabus sets out for the core Transformation
Geometry:

Each transformation f of the plane I which has the coordinate form

(x,y) = (x",y") where

x"=ax+by
v =cx+dy
and ad—-bcz0 ,

maps each line to a line, each line segment to a line segment, each
pair of parallel lines to a pair of parallel lines, and consequently
each parallelogram to a parallelogram.

Proof confined to a specific transformation (numerical values
fora,b,c,andd) .

Examples of the invariance or non-invariance of perpendicularity,
distance, ratio of two distances, area, and ratio of two areas connected
with specific parallelograms (including rectangles and squares) under
transformations of the form

x'=ax+by

y =cx+dy

with numerical coefficients.
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In making the transition from the core material to the optional material the students will be
aware of the more abstract style of work. As an introduction to the new material, it is
important that students be given an opportunity to do some investigatory work with a specific
affine transformation such as

x'=2x+3y+4

y' =4x—-5y+2

and its matrix form

o 2 3Y\x 4
= +
y’ 4 S\y 2
so that the introduction of the new element of the transformation, the addition of a vector, can

be seen to correspond to a translation.

It might be pointed out that the core transformations are affine transformations of type

)0 o) v wamoees

and that the reason why a translation cannot be expressed in such a form is, of course, that the
origin is invariant under this type of transformation, while a translation (unless the identity
translation) will move the origin.

An interesting question now is if there are any invariant points under affine transformations
such as
x'=2x+3y+4

y =4x—-5y+2

that is, when is (x"y") =(x,y) ?
This requires the solution of the simultaneous equations
x=x or 2x+3y+4=x

y'=y or 4x-5Sy+2=y
which simplifies to
x+3y=-4

4x -6y =-2

. : 5 [ : : .

giving the solution 379 as the invariant point.

A useful result for the purposes of constructing questions with reasonable answers is that if
x' =ax+by+k,
y =cx+dy+k,
and ad —bc#0

then the invariant point (x,y) has coordinates

_ —k(d-1)+bk, _ —k,(a-1)+ck

Y a=Dd-D-be 2T Ga-1)d—D-bc
providing that (a —1)(d —1)—bc # 0.
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As formal introductions are now called for, let us begin.

1 : Affine Transformations

A function f: TI = IT: p — p’ such that if p and p” have coordinates
(x,y) » (x",y") , respectively, then

x'=ax+by+k

y =cx+dy+k,

for some constants a,b,c,d,k, ,k, for which

ad —bc #0,

is called an affine transformation of I1.

An affine transformation has matrix form

(-

where

a b k,
A= , K= and ad —bc#0.
c d k,

We denote by ClI the set of all affine transformations of IT .

It is important to establish the result that each affine transformation has an inverse which is also
an affine transformation.

Given fe Cl, with

AR

consider g defined by

x' X
()l
y y

where A-! is the inverse matrix of A .

Then g € Cl as it has the appropriate form, and as det A = 0, so det A-l1=0.

a
Recall that if A = (
C

N 1 (d -b
and A™ = ( ) .
detA\-¢ a
Then gof =fog=1iy, the identity transformation on the plane II,

b
d) , then det A = ad - bc

: . (10
with matrix Iy =(O 1) :
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We now establish in general terms some results from the core which were established using
specific transformations.

Transformations f of the plane [| which have the co-ordinate form

(x,y) — (x',y") where

x'=ax+by+k

y =cx+dy+k,

and ad-bc=0 ,

map
each line to a line 1.1
each line segment to a line segment 1.2
each pair of parallel lines to a pair of parallel lines 1.3

We prove 1.1 and 1.2 most easily by using the parametric equation of a line. (See pp. 17 ff.
of these notes).

Result 1.3 is proved quite neatly using a set definition of parallel lines.

Proof 1.1
If p= (xl,yl), D, = (xz,yz) are distinct points, the line L = p,p,

has parametric equations
x=x1+t(x2—xl), y=y1—t(y2—y1)wheret€R

and (x,y) is a representative point on the line L.

Using the equations for an affine transformation, we map

(x,y)— (x',y') where :

x'=ax+by+k

y =cx+dy+k,
and ad - bc = 0.
So
x' = a[)c1 + t(x2 - X )]+ b[y1 +t(y2 = )]'*' ky
= ax, + by, + k, +at(x2 —)c])+bt(y2 —yl)
=axl+byl+k1+t[a(x2—x1)+b(}’2—}’1)] L1
=ax, + by, +k + t[(awc2 +by,) - (ax, + byl)]

= ax, + by, + k +1[(ax, + by, + k) - (ax, + by, + k)] 1.12
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Under the affine transformation, the points p;= (x;,y;) and p2= (X2,y2),
which were given on the line L, are mapped to image points p;'= (x;.y1")
and p2'=s (x2',y2") as follows:

' t

p o x, =ax, +by +k y, =cx, +dy +k,
Dy - x, =ax, +by, +k Y, =cx, +dy, +k,
Thus 1.1.2 above

x'=ax, + by, +k +(ax, + by, + k) - (ax, + by, + k)] 112
can be re-written as

!

x'=x +t

! t
X, —xl) where ¢t €R.

The same procedure applied to y' yields
Yy =y +I(,\-': -y | where t €R.

These parametric equations for p'=(x',y") show that the line L is

mapped to a line L' . QED.

NB the possibility that L is mapped to a point only is covered by the restriction that
ad-bc = 0 , for

x’=axl+by1+kl+t[a(x2—x1)+b(y2—yl)] 1.1.1

and the equivalent statement for y’'

Y =cx, +dy, +k, + t[c(x2 - xl) + d(y2 -y )]

will only amount to a single point if the contents of the square brackets are both zero.
(-8

a(xz - x1)+ b()’z _)’1) =0

T c(xz—xl)+d(y2—yl)=0

As ad-be= 0, the only solutions are x;=x, and y;=y, which mean that p;=p; ,
a contradiction, as the points are distinct.

Proof 1.2

. The line segment | p;p2] has parametric equations
x=x1+t(x2—x1), y=y]—t(y2—y1) where 0=t=s1,t€R

for a representative point (x,y) on the line segment.

Following from 1.1, such points (x,y) will be mapped to (x',y') where

’

x'=x +t(x2’—x1,) , y’=y1’+t(y2;—ylf) with O0sz<1 , tE€R.

That is, the line segment [p;'p2'] . QED.
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Proof 1.3

Let L and M be lines, such that L and M meet at some point p.

Applying an affine transformation f, and using 1.1, L is mapped to a line L' = f(L),
and M is mapped to a line M' = f(M). Let p be mapped to a point p'=f(p).

As pEL thenp' €L" .

Similarly, as p EM then p' EM’ .
So pEL'NM".

Thus the lines L' and M' meetatp’ .

/

Now letL I M .
Either L=M, in which case L'=M/,

or LNM=0.
If the latter, then L' N M’ = &, which implies L' | M" .
Otherwise, if L' N M’ = g then the inverse map f -

would map ¢ to some point £'(g) such thatf(q) ELN M,
which contradicts LN M = <.

QED.

<
=
) .




We now establish some new results.

Transformations f of the plane [ which have the co-ordinate form

(x,y)—(x',y") where

x'=ax+by+k

Yy =cx+dy+k,

and ad-bc=0 ,

map
half-planes with a common edge to half-planes with a common edge 1.4
triangles to triangles 1.5
parallelograms to parallelograms 1.6

Proof 1.4

Let H; and H; be half-planes with common edge L. That is, the union of H; and Hj is
the entire plane [] and the intersection of H; and Hj is the line L.

H,

H,

Let x be a point of H) not on the edge L.
Let f be an affine transformation. Hence f-1 exists and is an affine transformation,

Consider the line f(L) and the point f(x). As x is not on L so f(x) is not on f(L).

Hj

f(L)
The line f(L) may be considered the common edge of two half-planes H3 and Hy.

Let the half-plane H; contain the point f(x).

We must prove that the image under f of each point of H; also lies on H3 and equally,
that each point of H; is mapped by f-1to a point on H; .
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P——

Let peH, , and we wish to show that f(p)eHs .

Assume the contrary, that f(p)eH4 but not on the edge L, as the edge is common to Hs;
and Hj.

f(L)

H2 H4 f(p) s

Thus f(x) and f(p) are on different sides of f(L), so a line segment joining the two
points must cross f(L) at some point q.

Now f-1 maps () f(L)toL
(ii) the line segment [f(p)f(x)] to the line segment [px]

so f-1 maps q to the intersection of L and the line segment [px]. Now x is in H; but
not on L, and p is not on L as f(p) is not on f(L), so the only way this intersection can
contain a point is if p does not belong to Hj - a contradiction.

So if p belongs to H; then f(p) belongs to Hsj.

Conversely, let ueHs and we now wish to show that f-1(u)eH;.

Both u and f(x) belong to Hs.

Using what we have just proved above, we can say that u and f(x) are both mapped by
f-1 to the same half-plane. Now f(x) is mapped by f-1to x, which belongs to Hy ,

so u is also mapped to a point in Hj.

So if u belongs to Hs then f-1(u) belongs to H;.

Thus f(Hl) = H3 . QED.
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Proof

1.5
If p,q and r are three distinct, non-collinear points of the plane, then the triangle pqr,

written Apqr, is the set of points H;M H,M Hy , where

H; is the half-plane with edge qr, containing the point p
H, is the half-plane with edge pr, containing the point q
Hj is the half-plane with edge pq, containing the point r

If Apgr= H;M HyMN Hj then

£(Apqr) = f( H;N HaN Hy) = £ H)NE H)N( Hy)

which is a triangle whose vertices are f(p), f(q), and f(r) as required. QED.

Theorem 1.6

Let pq be parallel to sr and ps be parallel to qr.

Let H,, H,, Hj,and H, be half-planes such that

H, has edge pq, containing the point s
H, has edge ps, containing the point r
Hs has edge qr, containing the point p
H, has edge rs, containing the point q.

Then the parallelogram pqrs is the set of points H;M HoM H3M Hy .




7—

The line f(p)f(q) will be parallel to the line f(s)f(r) as pq li 1s,
and the line f(p)f(s) will be parallel to the line f(q)f(r) as psli qr .

Moreover,
f(parallelogram pqrs) = f( H;N HyN H3N Hy ) =1£( H))NE(H)NE( H3)NEHy ) ,
a parallelogram whose vertices are f(p), f(q), f(r), and f(s) as required. QED.

We next establish some useful results concerning the area of a triangle and a very interesting
interpretation of the determinant of a matrix representing an affine transformation.

Recall the following results:

(i) Consider the points p, = (x1 , yl) and p, = (xz, yz).

The equation of the line p,p, is obtained from

(.‘" - ) (-t : -"i)

()’2 - }’1) (""3 - xl) o

(x, —x)(y - 3) - (s = Yz - x) = 0.

(ii) The perpendicular distance of a point p; = (x3, y3) from a line

ax + by + ¢ = 0 is obtained by substituting x, for x and y, for y in

|ax + by +¢|
Ja? +b?
1

(iii) The area of a triangle = E(length of one side)(perpendicular height)

the formula: distance h =

P1

% p2

Let p;, p2,and ps3 be three non-collinear points.Then the length of the perpendicular
distance h from p3 to pipz is obtained using (i) and (ii) :

'(xz - x1)()’3 - )’1) . ()’2 - )’1)(x3 - 'xl)l
\/(Tcz 'x1)2 +(>’2 —y1)2

h=

and the length of [p,p,] is = \}(72— xl)z +(y2 -0 IF .
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So the area of Ap;p;p3 is obtained from (iii) as
1
E|(x2 = i )()’3 - )’1) B ()’2 =N )(xs =B )’

which becomes a more familiar result if p; is taken to be the origin (0,0), in which case

the area of Apip:p3is

1 .
—2—|x1y2 - xz)’ll

The modulus sign arises from the use of the formula used to calculate the perpendicular
distance of a point from a line:

‘a..r + by + c"

distance h =
\/az +b*

It will be recalled that if two points are positioned on opposite sides of a line, then the
value of the expression ax+by+c will change sign as the coordinates of each point are
substituted into the expression. This test is often used to quickly determine if two
points are on the same or opposite sides of a line.

Observe the following interesting result. Consider a triangle Apgr and its image
Ap'q'r'.

'

r

In the original triangle Apqr, the vertices are traversed anti-clockwise in the sequence

p.q.r. In the image triangle, in this example, the vertices are traversed anti-clockwise
in the sequence p',r',q'. This change in orientation may be detected very quickly
by finding the area of each triangle, for the value of the expression inside the modulus
sign will have an opposite sign as each area is calculated.

We next establish a relationship between the area of a triangle and the area of its image
triangle under an affine transformation.

Consider a triangle Ap,pop3 with p1= (x1,y1) , p2= (X2,¥2) and p3= (0,0) and

1
area(Ap,p,p;) = E|x1)’2 - x2y1| 2
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We apply an affine transformation of type
x'=ax+by+0

y =cx+dy+0 withad-bc=0

or, in matrix form

x' X 0 ) a b
( )=A()+(),w1thA=( )andaa’—bc;eO.
y' y) \O c d

Note that the determinant of A : det(A) = (ad - bc).
Appying this transformation to the triangle Ap,p,p,

we obtain an image triangle with vertices

!

P = (ax1 + by, ,cx, + dyl)

!

73 = (ax2 + by,,cx, + a’yz)

P = (O’O)
Applying the area formula to these co-ordinates gives

! !

the area of the image triangle Apl,p2 Dy =

1
Ei(axl + by, )(cx2 + a’yz) - (a)c2 + by, )(cx, +dy, ){
which simplifies to

%‘(ad - bC)(xl)’Z) ~(ad - bc)(x2y1 )|

|ad - bC"xlyz - xzyl‘

N | =

= |det A| . (area of Ap,p,p,)
that is,
area of Ap, p, p, =|det A| . (area of Ap, p, ;)

Thus we may interpret the modulus of the determinant of the matrix of
an affine transformation as a measure of the effect of the transformation
upon the area of a triangle to which the transformation is applied.

The work shown here establishes this result for the restricted case of a triangle with one
vertex at (0,0) under an affine transformation with k; and k; both zero. With a little

more algebra, and using the more general formula for the area of a triangle, the general
result stated here may be demonstrated to be true.

An immediate consequence of this result is that as an affine transformation maps a
triangle to a triangle, it will only conserve the area of the triangle if the determinant of
its matrix has modulus 1. This matter will be dealt with in more depth below, but a
class exercise might be to express this condition in terms of the entries in the matrix
and to provide some examples of affine transformations under which area of triangles
is an invariant. Further, can this result be extended to other plane figures such as a
parallelogram? A square? A polygon? A circle?

We now show some properties that are not, in general, invariant by exhibiting one
affine transformation which does not conserve them.
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The Power of Counter Examples

Let f be the transformation defined by p'= f(p) , where p is(x,y) and p'is (x',y") , and for
all (ny) »

X
y

2x + 3y
4x + Sy

In matrix form this looks like

x' 2 3\/x 0 ) 2 3
= )()+() , With det( )=—2¢0
y' 4 5/\y} \O 4 5
so fis an affine transformation.

Let us now take the points p,q and r with coordinates (0.0), (1,0) and (0,2) respectively.
Then the image points p', q', and r' will have coordinates (0,0), (2,4) and (6,10) respectively.

re

r

R "

Using the distance formula

"\j(xz _xl)z +(y2 _)’1)2

giveslpql=1butlpq|=v20  sothatipql=Ipq!.

Thus not all affine transformations preserve all distances , and so

distance is not an affine invariant

We also note that | prI=2 and | p'r'| =V136, so

lerl 5l [136
gl "~ [p'q| V20
Thus
lerl  p'r]
lpdl ~ |p'd]

Thus not all affine transformations preserve all ratios of distances, and so

the ratio of two distances is not an affine invariant
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We note now that the line pq is perpendicular to the line pr.

Using the slope formula 2221
Xy =X

we obtain the slope of p'q' to be 2 and the slope of p'r' to be 5/3. That is, the image lines are
not perpendicular to eachother, as the product of their slopes is not -1.

Thus not all affine transformations preserve right-angles, so

| neither perpendicularity nor angle-size is an affine invariant |

Further, we note that the triangle Apqr is mapped to the triangle Ap'q'r".

Applying the formula for the area of a triangle gives the area of Apqr to be 1 and the area of

Ap'q'r' to be 2, so the areas of these two triangles are not equal. Thus not all affine
transformations preserve the areas of all triangles, and so

‘area of a triangle is not an affine invariant

Finally we note that in the Apqgr the vertices are traversed anti-clockwise in the sequence p,q.r.

In the image triangle Ap'q'r' however, the sequence p', q', r' is traversed clockwise. (Note
that the determinant of the transformation is -2 , ie negative). Thus not every affine
transformation preserves the orientation of three non-collinear points as either anti-clockwise or
clockwise, and so

_orientation is not an affine invariant

Although we have seen above that , in general, distance is not an affine invariant and that the
ratio of two distances is not, in general, an affine invariant, it will turn out to be very
productive if we obtain an expression for the ratio of the length of an image line segment to the
length of the original line segment. This ratio is known as the magnification ratio. This
approach leads to a new result:

If f € Cl, then the ratios of lengths of segments on parallel lines are
invariant under £ 1.7
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Behaviour of distance under affine transformations.

Let f be an affine transformation of the plane [ which has the co-ordinate form
(x,y) — (x',y) where

x'=ax+by+k

y =cx+dy+k,

and ad-bc=0 ,
and let p; and p; be distinct points with coordinates (x1,y;) and (x2,y2) respectively.

Let| pip2| =r and let the half-line [p;p, have angle of inclination 6 .

Then,

X, —x, =rcos@, y,—y =rsinb.
We now apply an affine transformation f to the points p; and p, and obtain the image
points p;'and pp'. We wish to calculate the distance | p;'pa'l.

]

yi' _

y2 _

| |

)é]' x2| \

' !
Under the transformation £, x;, =ax, + by, + k andy, =cx, +dy +k,,

x, =ax, +by, +k andy, =cx, +dy, +k,.

! !

So x, —x, =a(x,—x)+b(y, -y )=arcos6 +brsin@ =r(acosd + bsinb).
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Similarly,

!

y, =y, =r(ccosB +dsin8).
Then the ratio of

' r\2 ’ r\2
length of the line segment from p,’ top, _ \/(x2 ~h ) * (y2 N )

length of the line segment from p, to p, r
\P(acose +bsin) +r*(ccosf + dsin8)’
r

~ r\/(acose +bsin6)” +(ccos@ + dsin )’

>
= x/(;cose +bsin) +(ccosb +dsin@)’

We refer to this ratio as the magnification ratio k.

If we refer back to the example on page 47, this ratio k should be v20.

In that example a=2, b=3, c=4, d=5, 6=0.
Using the expression for k we have just obtained shows k to be

\{(2cos0 +3sin0) +(4cos0 + 5sin0)* =~/20

However, the really important information we can extract from this complicated
expression for k is simple to see - if you stand back far enough!

Proof 1.7
The magnification ratio k varies with f (because of a,b,c, and d) and with 0.
We conclude from this:

i) if we apply different transformations to the same line segment the
resulting value of k is likely to be different because k varies with f

(i) if we apply the same transformation (ie the values of a,b,c and d
remain the same) to two line segments which are on parallel lines

(ie which have the same value of 6, or more exactly, 6 = m), then the
value of k must remain the same for each line segment and its
image.

N
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that is,

'

Py Py

’M P2
IPlP: Ipspct‘ ‘
Rearranging this gives

!

P; P4

ijp-ll _
‘p"pzl |P1Ip2’

Thus, ratios of lengths of segments on parallel lines are
invariant under affine transformation. QED.

This is a very important result.
We saw above that the ratio of two distances is not an affine invariant.
We have now proved something about a more restricted case, in which the distances

are the lengths of line segments on parallel lines.

It will be recalled that a line is parallel to itself.

So we may state that
lpal _ P’
sl s

A very productive case is when the line segments are formed by three distinct points

p,q and r. .
Thus
lpgl _lp'q
lgr|  lg'r'
P
-

i




We now obtain the following results:

if f ¢ Cl, then
being a midpoint is an affine invariant 1.8
being the centroid of a triangle is an affine invariant 1.9

internal and external division of a line segment in equal ratios
is an affine invariant 1.10

ql
Proof 1.8
d '
f
q
p
d P

Proof

q

Let p and g be distinct points with d the midpoint of [pq].
Then the three points are collinear, and |pd| = |dg|

or, M=l and pd |l dq.
ldg]

If £ is an affine transformation, then
f(p)=p', f(q)=q' and f(d)=d’ so

p', q' and d’ are collinear, and by 1.7, lp'd| -1
|d'q'|
I;Ies:lce d' is the midpoint of [p g ] ) -

Recall that a median is a line joining a vertex of a triangle and the
midpoint of the side opposite the vertex.

Recall that the medians of a triangle are concurrent in a point called
the centroid.

Let f be an affine transformation.

Then f maps a triangle to a triangle (vertices to vertices, sides to sides).

By 1.8, midpoints of sides are mapped to midpoints of sides.

Consequently, each median is mapped to a median, so the centroid of a

triangle is mapped to the centroid of the image triangle. QED
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proof 1.10

/
' P, o

' Consider the line segment [pq] on the line pq. Let r and s be two points of pq such that
r and s divide [pq] internally and externally in the same ratio.
That is,
lpr| _ lpsl
Iral  sdl
and all segments are parts of the one line,which is parallel to itself.

If £ is an affine transformation, then
f(p)=p', £(q)=q and f(r) =r' and f(s) = 5".

Soby 1.7,
Pl _lp's|
rq| 1s'q
that is, internal and external division of a segment in equal ratios is an
affine invariant. QED

The final result in this section considers the ratio of the areas of two triangles and what happens
to this ratio under an affine transformation. This ratio proves to be invariant, so consequently

the ratio of the areas of two triangles is an affine invariant 1.11

Proof 1.11
Recall the result shown on page 46

area of Apll p2’ p3’ = |det A] . (area of Ap,p, Ps)

where the triangle Ap, p, p, is mapped by an affine transformation fto
the image triangle ApI’ pzl p3, , where f is expressed in the form
) +(e) |
A + .
Y k,

If Ap, p,p, and Ap,p;ps are two triangles then

area Ap, p, p3' =|det Al . (area Ap,p,ps ) and

area Ap, ps ps =|detA| . (area AD,PsPs)-

Thus area Ap, p, ps _ |det Al . (area Ap,p,Ps ) _ area Ap,p,p, ‘
area Ap, p. p,  |detAl. (area Ap,psps)  area Ap,psps

Hence the ratio of the areas of two triangles is an affine invariant.

QED
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At this point it is important that we do something with our results. As already indicated, the
area of investigation will be the transformation which maps a circle, centre (0,0), radius 1 to an
ellipse whose equation is

2 2
x_2 + y_z =1
a b
and the deduction from results for a circle of similar results for an ellipse.
As the syllabus refers to

Focus-directrix definition of an ellipse; derivation of the equation of
an ellipse in standard form

we had better provide these before proceeding further.

2 : Focus-directrix definition of an ellipse

Vl
w2 | se
m
k S (o} u'
D v

Let D be a fixed line, s € D a fixed point, and e > 0 a fixed number.

Then the set C ={ p: Ips! = elpm! , where m is the foot of the perpendicular from p to D}
is called a conic section . We call s a focus , D a directrix and e the eccentricity of C.
When

(i) e=1, wecall Caparabola P,
(i) O0<e<l1, wecall Canellipse E;
(iii) e>1, we call C a hyperbola H .

Equation of an ellipse in standard form
Proof 2.1
Let k be the foot of the perpendicular from s to D. We divide [ks] internally and

externally in the ratio /:¢ ,0 < e < 1, and thus take points u and u' such that u € [ks],

s € [ku'] and

Isul = elukl , Isu'l = elu'kl .
Then u and u' are points of the ellipse £ on the line sk. We let ¢ be the mid-point of
[uu'] and let lcul = Icu'l = a. We choose our coordinate system so that sk is the X-axis,
and c is the origin, so that u and u' have coordinates (-a,0) and (a,0) respectively.

Then s has coordinates (-ae,0) and k has coordinates (-a/e,0).
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The directrix D has the equation ex + a=0.

As E={ p: Ips| = elpml , where Ipml is the perpendicular distance from p to D},
then p(x,y) is on the ellipse E if and only if

a7 - )

As each side is 20, we may square each side to obtain

(x+ ae)’ +y* = (ex + a)’
which gives
(1 - e2)x2 +y' = a2(1 - e2)

and hence

x2 y?

—+ =7 =1.

a® azil—ez)

Letting az(l— e2) =b*, where b>0, we obtain
2 2

"—2+Z—=1. 2.1.1

o

QED.

[uu'] is called the major axis, [vv'] is called the minor axis, where v has coordinates
(0,-b) and v' has coordinates (0,b) .

If p(x,y) is on the ellipse, satisfying equation 2.1.1, so do the points (x,-y) and (-x,y).
Thus E is symmetrical about the X-axis and symmetrical about the Y -axis.

3 : Circle and ellipse
As we have already seen, the transformation f given by the equations

X ax

by

690

maps the circle x*+ y2 =1 to the ellipse x_2 + );—2
a

nn

or in matrix form

=1, witha>b>0.

a 0
As det(0 b) = ab , which is non - zero, f is an affine transformation.

Consequently, f must have an inverse, which is also affine. This inverse, f-1 , is given by




Following from 1.1,1.2, and 1.3, the transformations fand f-1 map each line to a line,
each line segment to a line segment, and each pair of parallel lines to a pair of parallel lines.

We now apply these ideas to deduce some results for an ellipse from results we already know

for a circle. In what follows, points or lines which are dashed are connected with an ellipse,
otherwise points or lines are connected with a circle.

Let L' be any line. Then f-1(L') is a line. Let f-1 (LY = L.

The line L will meet the circle C in exactly two points or exactly one point or in no point at
all.

Consequently L' will meet the ellipse E in exactly two points or exactly one point or in no
point at all.

When L meets C in one point p, L is the tangent to C at p.
In that case L' meets E in one point p', and then L' is the tangent to E at p'.

N

Note that the origin o = (0,0) is the centre of C and that f(o) =o.

Deduction 3.1

The centre of an ellipse E is the midpoint of every chord which contains it.

Proof 3.1

Consider any distinct points p;' and p2' which belong to an ellipse E.
The segment [p1'p2'] is called a chord of the ellipse E.
The line p;'p2' meets E only in the points p;' and py' .
Suppose that o lies on the chord [p1'p2'] -
Then o = f-1(0) lies on the chord [pipz] of the circle C .
But o is the midpoint of [p;p2] , which must be diameter.
By 1.8 , f maps midpoints of segments to midpoints of segments, so o = f(0) is the
midpoint of [p;'p2'] .
QED
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The point o is called the centre of E, and every chord of E containing o is called
a diameter of E.

Note: the point o is unique, for if o and o; are distinct points, then 0o; can meet E
only in two points p' and q', and both o and o; cannot both be the midpoint

of [p'q'].

We now prove the result we met at the very beginning:
Deduction 3.2
Tangents to an ellipse at the end-points of a diameter are parallel to each other.

Proof 3.2

Let [p;'p2'| be any diameter of the ellipse E, and let L' and M' be the
tangents to E at p|' and p,' respectively.

Then L = f-1(L') and M = f-1(M") are tangents to the circle C at the
points p; and p».

As |pi'p2'] is a diameter of E it contains the origin o.

So |pip2] contains the image of the origin o under f-1 and f-1(0)=o0.
Thus [p;pz] is a diameter of C, so the tangents L and M are parallel
to each other.

As f maps parallel lines to parallel lines, so L' Il M'". QED
The next deduction calls upon a property of the diameter of a circle.
If a diameter of a circle is perpendicular to a chord, then

the diameter bisects the chord. That is, the diameter contains
the midpoint of every chord perpendicular to it.

57




Deduction 3.3

The locus of midpoints of parallel chords of an ellipse E is a diameter
(less its end-points) of E.

Proof 3.3
Ps |
P1 P3 |
P6
P4 p2
_—bf |

Let [p1'p2'] be any diameter of the ellipse E.

Consider the chords of type [ps'ps'], where ps'ps' is parallel to p;'p2' .

Under the affine transformation f-1, [p;'p2'] is mapped to the circle diameter [p1p2),
and chords of type [ps'pe'] are mapped to chords of type [pspe], all on lines

parallel to p;p2 .

Let [p3p4] be a diameter of the circle C, such that pspa is perpendicular

to p1pz and also perpendicular to all lines parallel to p;p.

Then [psp4] bisects all the chords of type [pspe), and so contains their

midpoints. In fact, such midpoints fill out all of [p3p4], except for its

end-points.
As f maps midpoints to midpoints, the midpoints of all chords [pspel

are mapped to midpoints of the chords [ps'pe'] and these points in turn
fill out the diameter [p3'p4'] except for its end-points. QED

The next deduction requires an new idea, that of the conjugate diameters of an ellipse.
We have already recalled a property of the diameter of a circle, that a diameter bisects all chords
which are perpendicular to it.

When two diameters of a circle are perpendicular to each other, as shown here,
then all chords which lie on lines parallel to one diameter are bisected by

the other diameter - and vice versa. Such a pair of diameters are

known as the conjugate diameters of a circle.

If we deal with bisectors as lines containing midpoints, as we did

in 3.3 above, we may map this idea of conjugate diameters over
to an ellipse.
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hus we may say that given a diameter
'p2'] of an ellipse E, there is a second p3

diameter [p3'pa'l, such that [py'p2']
s all chords of E on lines parallel

pisect .
'p4'] and vice versa.

to [P3

Such diameters are called
conjugate diameters of E.

p4’

An interesting property of the conjugate diameters of an ellipse concerns the tangents at their
end-points.

In this diagram we have a pair of conjugate diameters of an ellipse, with the tangents drawn in
at the end-points of each diameter. We have already proved (3.2) that each pair of tangents is
parallel.

As usual, we map this situation on the ellipse back to the more familiar ground of the circle in
the hope of picking up some information which, in turn, is capable of being mapped back
unchanged to the ellipse.

Here we see the result of such a mapping. The conjugate diameters of the ellipse have become
two diameters of a circle, at right angles to each other. The tangents at the end-points of each
di_ameter are perpendicular to the diameter and parallel to each other. Interestingly, the pair of
tangents at the ends of one diameter are parallel to the other, conjugate diameter.
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As we map back to the ellipse, the right angles are not preserved, as we have already noted
that, in general, the measure of an angle is not an affine invariant. However, parallelism is an
affine invariant, and consequently we may cenclude that the tangents at the end of one
conjugate diameter of an ellipse are parallel to the other conjugate diameter -
and vice versa.

(Class exercise- write out a more formal proof based on this discussion).

A glance back at the diagrams on page 57 helps to see the basis of our next result. The
tangents to the end-points of the conjugate diameters of the ellipse will form a parallelogram.
These tangents mapped over to the circle will also form a parallelogram, as this is an affine
invariant (1.6). We can, however, say a little more.

These two pictures show that the parallelogram around the circle is in fact a square - a square
whose area is constant. If the radius of the circle is r, then the area of the circumscribing

square is 412 .
We are now in a position to deduce a result about the parallelogram around the ellipse:

Deduction 3.4

For an ellipse E, the parallelogram formed by the tangents at
the end-points of a pair of conjugate diameters has constant area.

Proof 3.4 q1 q) !

q2

q3 D qs'

Let [p;'p2'] and [p3'p4'] be conjugate diameters of an ellipse E.
The tangents at the end-points of these diameters form a parallelogram with
vertices q;',q2',93',q4', say.
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Under the affine transformation f-1, the parallelogram circumscribing
the ellipse is mapped to a square circumscribing the circle.
The vertices of the square are qi, q2, q3,94.

All such squares have the same area.
If q; and qj are opposite vertices, then the area of the square q;q2 q3qa4 is

twice the area of the triangle q;q»qs. That is, the ratio of the area of the square

to the area of the triangle is 2:1.
The affine transformation f will map the square q;q2 q3q4 to the parallelogram

q1'q2' q3'q4’ and the triangle q;qz q3 to the triangle q;'q2' q3', keeping the ratio
of areas intact as an affine invariant.

2 . area(q;'q2'q3")

Idet Al . area(qiq2 q3)

2 .ldet Al . area(qq2 q3)
= Idet Al .2 . area(q;qz q3)

= Idet Al . area(qq2 q394)

Thus area(q;'q2'q3'q4’)
but  area(q;'qa'q3')
hence area(qi'q2' q3'q4’)

But area(q;qz q3q4) is constant, as is the value of det A.

Consequently, area(q;'qa' q3'q4') 1s constant. QED

NB: Idet Al = ab and area(qq2 q3q4) =412 =4 ,as r=1.
thus area(q;'qz'qs'q4’) = ab . 4 =4ab
a result which agrees with the case when the parallelogram

circumscribing an ellipse is a rectangle with sides parallel
to the X and Y axes.

The final result of this section concerns a property of the circle concerning the locus of
harmonic conjugates of a point (key terms here are pole and polar).

The process of establishing a similar result for an ellipse is really straightforward, and follows
the pattern of proof which hopefully is now a familiar one. The key affine invariant here is the
result established at 1.10, that internal and external division of a line segment is an affine
invariant.

The real difficulty here is to establish the result for the circle, and this is done through a
sequence of three results, which are sketched out below.

Note 1
Let a and b be distinct points, and m their midpoint.
Let ¢ and d be points of the line ab, on the one side of m
and satisfying

mc||md) = |mb|’

Then c and d divide the segment [ab] internally and externally
in the same ratio.
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Note 2
Let t and u be the points of contact of the tangents from an

exterior point p to a circle C with centre o and length of radius k.
Then the chord [tu] meets the segment [op] in a point v such that

lovl . lopl =

ﬁ t
Note 3

Let t and u be the points of contact from an exterior point p to a
circle C with centre o. If a line through p cuts C in the points
q and r, and cuts tu in s, then s and p divide the segment [qr]
internally and externally in the same ratio.

t

Note 4
Let C be a circle with centre o, and p any interior point other
than o. Then the locus of points s such that if a line sp meet
C in the points q,r then p and s divide [qr] internally and
externally in the same ratio, is a straight line L. S

NB: pand s are the harmonic conjugates with respect to the circle.If p is fixed
inside the circle, the locus of s is the line L. p is the pole and L the polar.
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Deduction 3.5

For an ellipse E, centre o, and p' any interior point other than o,
the locus of points s' such that if a line s'p' meet E in the points
q'r' then p' and s' divide [q'r'] internally and externally in the
same ratio, is a straight line.

If p' is an exterior point of E, then the locus of s'is [t'u'], where
t'and u' are the points of contact of tangents from p' to E.

Proof 3.5

The ellipse, lines and points as given above are mapped by the
affine transformation f-1to a circle.

By 1.10, the internal and external division of a line segment is
invariant.

Consequently, the locus of s, the image of s', is a line L. . (Note 4).

Under the transformation £, the locus of s, the line L, is mapped
to the line L', the locus of s'.

If p'is fixed as an exterior point of E, then the same argument gives

the locus of s' to be the image of the chord [tu], that is, the chord of
the ellipse, [t'u'}. QED
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4 : Similarity transformations

In our earlier discussion on the behaviour of distance under affine transformations, we |

examined this case:

Let f be an affine transformation of the plane [] which has the co-ordinate form

(x,y) — (x',y") where

x'=ax+by+k

y =cx+dy+k,

and ad-bc=0 ,

and let p; and p, be distinct points with coordinates (x),y;) and (xz,y2) respectively.

Let| pipz| =r and let the half-line [p;p, have angle of inclination 6 .

We proceeded to establish an expression for the length of [p,'p2'], the image of [p;p2], and
found that the ratio of the length of the image segment to that of the original segment was the

magnification ratio k, where

k = \/(acose + bsin@)® +(ccos + dsin6)*

We concluded from this that, in general, the magnification ratio k would vary with both the

affine transformation f (because of a,b,c and d) and the angle 6.

In this section, we now turn to the consideration of those affine transformations where the
magnification ratio k varies only with f and where the angle of inclination of lines plays no role
in fixing the value of k. Such transformations are called similarity transformations.

We will establish six results:

each similarity transformation f maps each angle ¢ onto an equal angle

the image under a similarity transformation f of any triangle is a similar
triangle

the circumcentre of a triangle is mapped to the circumcentre of the image
triangle under a similarity transformation f

the orthocentre of a triangle is mapped to the orthocentre of the image
triangle under a similarity transformation f

the incentre of a triangle is mapped to the incentre of the image triangle
under a similarity transformation f

the image under a similarity transformation f of a circle is a circle
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Result 4.1: Each similarity transformation f maps each angle ¢ onto an equal angle.

pProof 4.1
Let f be a similarity transformation, with constant magnification ratio k, and Appap3 is
any triangle, with ¢ the angle Z pipaps. pi'
Pl

p2

Applying the cosine rule to the triangle Ap;p,p3 we obtain:

|p2p3l2 = ‘p1p2|2 + |p|p3|2 - 2|p1p2|.Ip1p3|.cosgo

Applying the cosine rule to the image triangle Ap;'p,'p3' we obtain:

4

P2 Ps p py |cosgp’  (*)

2 ror
- z’p] P2

2 ! ! ! !
= ’Pl P> +‘P1 P

As the magnification ratio k is constant for a similarity transformation,
we see that

=k paipli = k|p3p] = k|,D,P2l-

Py P3 P2Ps

b

, and ‘pl D,
Substituting for these expressions in (*) gives:

k2

2

pps| = Klppaf + K |pips| = 2k|p,po) k|, py|-cose !

Dividing by k* gives

papal” =lpal” + |l = 2lpipallpyps) cose !
From which we conclude that cosg = cosg’

and consequently g =@ 'asO=sp <180 .

Thus each similarity transformation f maps each angle ¢
onto an equal angle. QED
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Recall that two triangles are said to be similar if their corresponding angles are equal in size.

The application of Result 4.1 gives 4.2 immediately.

Result 4.2: The image under a similarity transformation f of any triangle is a similar
triangle.
Proof 4.2

Letfbea sirﬁilarity transformation, with constant magnification ratio k,
and Apipops is any triangle. Let the angles of App2p3 be @,y and .

As fis an affine transformation, the triangle Ap;pops is mapped to a triangle

Ap1'p2'ps' and the angles @, ¢ and x are mapped to @', ¢' and ¥’
respectively.

By 4.1 ,9=¢', ¥ =y 'and x=x'.

Thus Apip2p3 and Ap;'pz'p3' are similar triangles. QED

We have already established above that each affine transformation has an inverse which is also
an affine transformation. We now prove that each similarity transformation has an inverse
which is also a similarity transformation.

Let S denote the set of all similarity transformations of the plane I

If £ ¢ S has a magnification ratio k = 0 and p' = f(p) for all pe S,
then
Ipi'p2' =k Ipipal.

Aoele)

As f is an affine transformation, so is f-1.

As f-1 has a magnification ratio of 1/k, then it is also a
similarity transformation.
We also note that the ratio of two distances remains invariant under a similarity transformation.

Hence for all p;',p2' €[],

. |P1P2| =

l‘ ' i
kplp2

If f is a similarity transformation with magnification ratio k and
D =Py Ps ™ Ps , then

Ps’P4’ B k‘P3P4|

= k|p1p2| and

’pl P,

! '
P P2

| _ klPu”z _ lpipz‘
1,,__",;4'} Kpwpsl - pspdl

and so

We are now able to prove 4.3,4.4 and 4.5.

Recall that the circumcentre of a triangle is the point where the perpendicular bisectors of the
sides of the triangle meet. This point is the centre of the circle which circumscribes the
triangle.
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Result 4.3: The circumcentre of a triangle is mapped to the circumcentre
of the image triangle under a similarity transformation f

proof 4.3 '

P1 P1

P3

P2

P3
Ll
If p1, p2,and pj are non-collinear points, let ¢ be the circumcentre

of A p; p2 p3.

If L is the perpendicular bisector of the side [ p2 p3], then L. goes
through the midpoint m of | p2 p3] and is at right-angles to p2 p3.
As f is an affine transformation, then

the line L is mapped to a line L'

asmeLthenm'e L'

as m is the mid-point of | p; p3] then m' is the midpoint of [ py' p3'].
As f is a similarity transformation, then ]

the right-angle between L and | p, p3] is mapped to
the angle between L' and | p2' p3'| and this angle
will also be a right-angle. (4.1)

Thus the perpendicular bisector of | ppp3| is mapped to the
perpendicular bisector of [ p2' p3'l-

Similar results may be established for the perpendicular bisectors
of the other two sides.
As the circumcentre c is the intersection of the perpendicular bisectors of

the triangle A p; p; p3, then its image c' is the point of intersection of the

perpendicular bisectors of the triangle A p|' p2' p3', thatis, c'is the
circumcentre of the triangle p;' p2' p3' . QED
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Recall that the orthocentre of a triangle is the point where the altitudes of the triangle meet. An
altitude is the line running through a vertex and its opposite side and perpendicular to that side.

Result 4.4: The orthocentre of a triangle is mapped to the orthocentre of the
image triangle under a similarity transformation f.

Proof 4.4

Pl P

p3! Ll

P3

Let h be the orthocentre of the triangle A p; p; p3. Let L be the line through
the vertex p; which is perpendicular to the opposite side p ps.
As fis an affine transformation, then

the line L is mapped to a line L'
as p;e Lthen p;'eL"

As f is a similarity transformation, then

if L is at right-angles to p, p3 then L' is at right-angles to p;' p3'. (4.1)

Thus the perpendicular from a vertex to the opposite side-line of A p; p2 p3
maps into a perpendicular from a corresponding vertex to the opposite side-

line of A p;' p2' p3".
Similar results may be established for the other two such perpendiculars.

As the orthocentre h is the intersection of the three such perpendiculars of
A p) p2 p3, then its image h' is the intersection of the corresponding

three such perpendiculars of A p;' p2' p3', that is, h' is the orthocentre
of the triangle A p;' p2' p3". QED

Recall now that the incentre of a triangle is the point where the lines bisecting the three interior
angles of a triangle meet. This point is the centre of the circle which is inscribed in the triangle.
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Result 4.5: The incentre of a triangle is mapped to the incentre of the image
triangle under a similarity transformation f.

p2'
f
—
L'
L
1
P2
Vl'
p

'
3

proof 4.5

Let i be the incentre of the triangle Ap;pap3 . If now L is the line p;i
then f(L) is the line p;'i' .

The angles Z ipip; and £ ipp3 are equal as L is the angle bisector.
By 4.1 the angles Z i'p;'p2' and Z i'p;'p3' are equal. Hence L'is a
line bisecting the angleZ p>'p1'p3’.

So the bisector of one corner angle of the triangle Ap|p2p3 is mapped by £
into the bisector of a corresponding corner angle of the triangle Ap,'p2'p3'.
Similar results may be established for the other two angle bisectors.

As the incentre i is the intersection of the three angle bisectors of the
triangle Ap;paps , then its image i' is the intersection ot the corres-

onding angle bisectors of the triangle Ap,'p2'p3', that is, I' is the
p g ang gle Ap p2pP

incentre of the triangle Ap|'p2'pa3’. QED
Recall now that a circle is the locus of a point p, such that [ppgl is constant for a fixed point py.

Result 4.6: The image under a similarity transformation f of
any circle is a circle.

Proof 4.6 p - p'
_'v

f

Let f be a similarity transformation with magnification
ratio k. If Ippgl =r, then Ip'pg'l = kr, thus the image under

f of the circle centre pg, radius r is a circle centre pg', radius kr. QED
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As S, the set of similarity transformations, is a subset of C/, the set of affine transformations,
every affine invariant is also an invariant under similarity transformations, but not of course,
vice versa. Combining affine invariants with those special invariants of similarity
transformations permits the following summary of some of the invariants for similarity
transformations:
the ratio of two distances
the magnitude of an angle
perpendicularity of two lines
similarity of two triangles
being an orthocentre of a triangle
being a circumcircle of a triangle
being an incentre of a triangle
being a circle
being a tangent to a circle
being a circle circumscribed to a triangle *
being a circle inscribed in a triangle *
being a square
being a rectangle
being a right-angled triangle *
being an isosceles triangle *
being an equilateral triangle *
being the bisector of an angle

(* indicates results not proven here but which may be easily obtained)

In introducing this section, it was remarked that we would consider those affine
transformations where the magnification ratio k varies only with f and where the angle of
inclination of lines plays no role in fixing the value of k. We now examine the matrices of such
transformations, and seek to establish which pattern of entries in the matrix will correspond to
a similarity transformation.

Recall our discussion above, where it was first established that the magnification ratio of an
affine transformation was the number k, where

k = ‘\f(acose +bsin@) +(ccosf + dsin QY

Squaring each side gives

k? = (acosB + bsinB) +(ccos +dsin )’

a?cos® 0 +2absinBcosh + b*sin® 9) + (02 cos? 8 + 2cdsinBcosf + d” sin’ 6)

%)(1 +c0s26) + (b2 + dz)(%)(l ~ c0s20) + (ab + cd)(2sinH cos 6)

(
= (a2 + cz)cos2 0+ (b2 + dz)sin2 6 + (ab + cd)(2sinHcosh)
(

a’+ cz)(

N | =

(@ +c*+b+ dz) + %(a2 +¢* = b* - d*)(c0s26) + (ab + cd)sin 26

In dealing with similarity transformations, we wish k (and so k2) to be independent of the
value of 0. This happens if TWO conditions are fulfilled:

a2 +c2-b2-d2=0
ab+cd=0
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If these conditions are satisfied, then we see that
k* = l(a2 +b% +¢? +d2)
2
that is, independent of 0.

We now attempt to extract some information about the matrix entries a,b,c,d from the
conditions ‘

aZ+c2-b2-d2=0 .. *
ab+cd=0 .. **

Firstly we note that we cannot have b2 + d2 = 0, for then b2 =-d2, Asb and d are real
numbers, this means that the only solution here is b=d = 0. If this is the case then the
equation marked * becomes

a2+c2=0

which, by the same argument gives a=c =0. But now a = b=c¢ =d =0, and the determinant
of the matrix (ie ad-bc) must be 0, which means the transformation does not have an inverse
and consequently cannot be affine.

If we multiply equation * by b2 we obtain

v’a® +b*c* - b (b* +d*) =0
which becomes
b’a® +b*c* = b*(b? +d?) ..¥xx
By equation **, ab+cd =0 and so ab = —cd.
Squaring gives a’h® = c*d*.
Substituting this into equation *** gives
c*d’ +b’c* = b*(b* +d?)
SO
c*(b? +d*) = b*(b* + d?)
As we have already seen that (b2 + a’z) =0
we must have
c2=b* or b==xc

If we now multiply equation * by d2 and proceed as above we conclude that
a’® =d* or d==xa

This gives four possibilities:
a -c a c a c¢ a -c
or or or
c a c -a c a ¢ -a
But equation ** requires ab + c¢d = 0, which for the last two matrices means that either a=0 or
b=0, conditions that make these two matrices the same as the first two.
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Thus we may conclude that if A is the matrix of a similarity transformation, then

a -C a ¢
either A=( ) orA=( )
c a c -

with at +c*=0.

As we have already established that for a similarity transformation
= t(@ b4+ d?)
2
we may conclude that

k* = (512+c2+c2+612)=c12+c2

N |

thus

k=-\fa2 +c’

We pursue this approach further by carrying out the same sort of investigation into two other
types of transformation: isometries, which preserve all distances, and dilatations, which
map a line to a parallel line.

In the case of isometries, we may capture the essence of these transformations by noticing
that the magnification ratio k, must be equal to one, and that the angle of inclination of the line
of which a line segment is a part does not play a role. Thus we see that isometries are
similarity transformations, with k=1 Thus the corresponding matrix must be of the type:

a -c a ¢
either A=( ) orA=( )
c a c -a

with a* +c¢* = 0.
To this we add the condition that

k=ra>+c* =1
= at+c’ =1
From this we see that the determinant of the matrix A must be = 1.

It will be recalled that a useful solution to such an equation as a2 + ¢2 =1 may be obtained
by thinking of each solution (a,c) as a point on a unit circle.

@
N

Thus there is an angle o such that a = cosc and ¢ = sina. .
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when the determinant of the matrix is + 1, we obtain the matrix

coso  -sina
sina  cosa

and the transformation

x' cosa  —sina\/x k,
= . +
y' sina  cosa J\y k,
As the determinant is +1, this transformation preserves orientation.

In the case of k; = ko = 0, the transformation

x' cosa —sina\/x
y' “A\sina  cosa J\y
corresponds to a rotation about the origin, anticlockwise through an angle o.
When the determinant is -1, orientation is reversed and we have the transformation
x' cosa  sina \[/x k,
= +
y' sina —cosa/\y k,
In the case of k; = kp = 0, the transformation
x cosa  sina \[/x
y' “\sina -cosa\y
corresponds to axial symmetry in the line through the origin, with angle of inclination o, .

As we have seen, an isometry is a similarity transformation, and consequently possesses all the
invariants of that type. In addition, however, the isometries have the additional invariants of

distance
area
congruence of triangles
congruence of circles

In the case of dilatations, we first give a definition. An affine transformation f is called a
dilatation if for each line L, we have f(L) Il L.

Let the line L have equation Ix + my + n =0 and the affine transformation f have the matrix:
x' a b\/x k, PR
= + , - .
) G) (i) eamtes

x
) , and hence for x and y, so that on substituting for x

We wish to obtain an expression for (
)l

and y in lx + my + n = 0, we will obtain an expression for f(L), the image of L.
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We proceed as follows, using matrix algebra.
x' k, (a b)(x]
- = or
()Ll alls
x' =k a b\(x
PR R
y' -k ¢ dj\y

a b
We now calculate the inverse of the matrix A = ( d) .
%

This is possible as ad - bc = 0.
a ' 1 (d -b
(c d) - detA(—c a )
We now pre - multiply each side of equation (*) by the inverse matrix.
a b\"'(x -k a b\"'(a b\[(x _
(F o0 o) nsesames
1 (d -b\(x -k x
detA(—c a )(y - kz) ) (y)
From this we extract the following expressions for x andy :

1 , , _ dh g b ., .
oin detA(d(x —k,)—b(y _kz))_ detAx detAy T

(—c(x’—k1)+a(y’—k2))= ¢ x4 l v+ o

y - X
det A det A

detA
where j, and j, are some numbers.

We now substitute for x and y in the equation of L: Ix +my +n =0.

(4 x' - b ’+'\+m(— x4+ a
\dota” aeta’ 1) T\ deta” T deta
Multiplying through by detA, we obtain

y’+j2>+n=0

i(dx' - by')+ m(~cx' +ay') + s =0, where s is some number.
or  (ld-mc)x' +(-lb+ma)y' +s=0.
This is the equation of £(L).
We will have F(L) Il L if the slopes of the two lines are the same.

That is, .__l = M

m  -lb+ma
or —(~lb + ma)= ~m(ld - mc).
Hence bi* +(d - a)lm-cm® = 0.

This is to hold for all lines L, and so for all values of [ and m not

simultaneously zero. This holds only if b=0, a= d,c=0.
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So the matrix of a dilatation must have the form A = (g ) = a(o 1).

Note that a = 0 as detA = 0.
Thus a dilatation is a transformation of the form

| 1 0 k, 2 ) .
=a +. ,where a = 0.
yl (0 1) kz ®)

It preserves or reverses orientation according asa > 0 or a < 0.

A dilatation f for which there is a point py, and scale factor a such that f(p|) = py, is called an
enlargement with centre pj, and scale factor a. For such a point pywe will have:

b =elo )G+ ()

So by subtraction from (*) we have

()=o)l )

and so

(x’—xl) (1 O)(x—xl)
=a
Y =y 0 I/\y-y

where a = 0. It preserves or reverses orientation according asa > 0 or a < 0.
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PART B

MISCELLANEOUS

TOPICS




FOUNDATION LEVEL

ORDINARY AND HIGHER LEVEL
CORE

PROBABILITY

This topic is listed in the Ordinary syllabus under the heading of Discrete Mathematics and
Statistics as follows:

Discrete probability: simple cases, with probability treated as relative
frequency. For equally likely outcomes, probability = (number of
outcomes of interest) / (number of possible outcomes). Examples
including coin tossing, birthday distribution, card drawing (one or two
cards), sex distribution, etc.

The other two courses include essentially the same material. In the Higher course core, the
restriction to “one or two cards” is omitted; additional material is included, but is restricted to
the option. Thus — except in the Higher course option — consideration is limited to very
simple situations. The basic strategy is simple, and is based on counting:

- count the total number involved;

- count the number of cases in which we are interested;

- divide the latter by the former to obtain the probability.

Two types of examples may be distinguished. In one, data are set out in a frequency table;
typically, a person or an object is to be picked at random (hence, any person or object is
equally likely to be chosen); and the probability of the person or object having certain
characteristics is to be obtained. In the other, the outcomes of an action such as tossing two
coins have to be worked out, and the probability of particular outcomes determined.

Data given via a frequency distribution

A typical easy example to introduce the ideas might be as follows. There are 25 students in a
class; 20 are right-handed and 5 are left-handed. If a member of the class is chosen at random,
what is the probability that this student is left-handed?

The reasoning proceeds thus:
- there are 25 students altogether;
- 5 of them are the ones in which we are interested (the left-handed ones);
- the probability is therefore 5/25, or 0.2.

More complicated examples might involve two criteria (say, eye colour as well as
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“handedness”). Data may be presented as a two-way frequency table.

Consideration of outcomes
Students can proceed to consider the probability of obtaining certain outcomes from an action

such as tossing fair coins or throwing fair dice. Since all outcomes are equally likely, the main
strategy is again based on counting, but this time with a preliminary stage involving listing:

- list and count the possible outcomes;

_ list and count the outcomes of interest;

- divide to get the probability.
A couple of short cuts are introduced as the work progresses, to obviate tedious listing and

lengthy counting.

To clarify thinking, it may be necessary first to establish what an outcome looks like. Thus,
examples can be tackled as follows:
(i) What is a typical outcome? For instance,
_ for throwing a die, it is say 4;
- for tossing two coins, it is say (T,H);
- for a three-child family, it is say (G, G, B).
(ii) What are the possible outcomes? For instance:
- for throwing two dice, they are: |
(4,H), (3,T), (T.H), (T,T).
How many are there?
- in this case, 4.
(iii) What are the outcomes of interest?

Consider, say, “ahead and a tail” — this means without regard to order (contrast “a
head and then a tail””), so they are:
(H,T), (T.H)

How many are there?
- in this case, 2.
(iv) Divide:
2/4, or 0.5.
The result can be interpreted for instance as “a fifty-fifty chance”, “an even-money

chance”, or “as likely as not to happen”.

In the particular example given here, students often have difficulty in accepting that (H,T) and
(T,H) are different outcomes, and that the four outcomes listed are equally likely. Use of coins
of different value, or emphasis on “first toss, second toss”, may clarify the former point. For
the latter, it may help to ask each member of the class to toss two coins and then to collect the
frequencies. To reduce the likeliihood of obtaining an atypical distribution, three of four
“rounds” of tossing may be carried out. (It may be noted that expected value is not actually on
the course, but students seem to find little difficulty with an intuitive connection between Lhis
and probability.) Other methods include the use of tree diagrams:
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v H (H,H)

H
A
T (H, T)
v H (T, H)
T
A

| T (T, T)
|
; and also “‘tables™:

‘ (H, H) (H, T)

| (T, H) (T, T).

The latter approach is also useful for presenting the 36 outcomes that occur when two dice are
thrown. These can be set out in a rectangular array, for instance as follows:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2,1) (2,2) (2,3) (2,4) (2,5 (2,6)
3,1 (3,2 3,3) (3,4) (3,5 (3,6)
4, 1) 4,2) 4,3) 4.4 4,5 406
(5,1 (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Occurrences of (say) “a total of 57 — (1, 4), (2, 3), (3, 2), and (4, 1) — form a diagonal line,
and so are easy to identify. Equally, questions about “a total of 4 or less” or “a total of [ess
than 5” have solutions that are easily picked out from the array (by looking at the top left-hand
corner). The same is true for questions involving say “at least one 2” or “exactly one 2”.

Short cuts

As indicated above, the basic “listing and counting” strategy becomes difficult for large sets of
outcomes. Hence, as a first short cut, a method is needed for finding the size without listing
and counting. This is where the Fundamental Principle of Counting (FPC) comes into play.
(In fact the principle was included into the course primarily so that it would be available for use
in such cases, though it is equally valuable in the — related —area of permutations and
combinations, and is of interest also in its own right.)

The FPC can be introduced via examples such examples such as: a menu with three first
courses and four desserts gives how many choices of two-course meal? If you have two pairs
of jeans and five shirts, how many (sensible) outfits can you make?

When applied to sets of possible outcomes, we obtain:
- adie and a coin: 6x2, hence 12 possible outcomes (checked by listing them);
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. three coins: 2x2x2, hence 8 (which again can be checked by listing, albeit with a little
more difficulty);
_ three dice ...a case in which the outcomes cannot easily be listed! ... 6x6x6, hence
216 outcomes. |
In cases with large numbers of possible outcomes, identifying outcomes of interest would

usually be restricted to simple cases.

A second short cut, this time for outcomes of interest, can be used when these appear to be
numerous but the outcomes not of interest are easily identified. Students can be encouraged to
“creep up on the answer from behind”. Thus, they can approach the problem as follows:

- count outcomes NOT of interest;

_ subtract from the total number of outcomes.

Note
In the interests of keeping the courses appropriately short, the emphasis was put on material
that could be handled by listing and counting or by methods immediately derived from this
approach. Unless they are taking the Higher course option, students are not expected to know
| the standard results for p(A v B), p(A).p(B), or p(A").
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HIGHER LEVEL
CORE

THE FACTOR THEOREM

The Factor Theorem is listed in the syllabus under the heading of Algebra as :
*The Factor Theorem for polynomials of degree two or three.
The asterisk indicates that a proof of this result may be examined.

This theorem has been traditionally approached using the Remainder Theorem, a method
that is unsatisfactory in that it leaves out the only appropriate case when x=a.

If f is a quadratic or cubic polynomial, so that
f(x)=a;x* +a,x* +ax +a,, forall xeR,

then forany k€ R, x—k isafactor of f(x)— f(k).
For, forall xeR,

f(x)=flk)=a,x* +a,x* +ax+a, - [a3k3 +a,k* +ak+ ao]
= a3(x3 - k3) + az(x2 - k2) +a,(x—k)+a,—a,
=a,(x - k)(x2 +kx + kz) +a,(x—k)(x+k)+a(x—k)
= (x—k)[a_,,(x2 +kx + kz) +a,(x+k) +a1]
=(x- k)[a3x2 +(ask + a,)x + a;k* + ayk + al].
As ax’ +(ak + a,)x + a;k” + a,k +a, is a polynomial, this shows that
(x—k) is afactor of f(x)- f(k).
In particular, if f(k)=0 then x—k is a factor of f(x).
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HIGHER LEVEL
CORE

THE PERPENDICULAR DISTANCE FROM A POINT TO A STRAIGHT LINE

This result is listed in the syllabus under the heading of Geometry as:

*Length of a perpendicular from (x,, y) to ax+by+c= 0. |

The asterisk indicates that a proof of this result may be examined.

The approach given here is more direct than many other approaches.

Consider the line L with equation ax +by+c¢= 0 and the point p,

with coordinates (x;,y,). Then the perpendicular distance from p,

to L is
|cz.t, + by, +¢|
Jat+b*
Proof : -

Let N be the line such that LLN and p, € N. Now a line with
equation —bx+ay+e=0 is perpendicular to L; for it to pass
through p, weneed —bx, +ay +e= 0, so that e =bx, —ay,.
Thus N has as equation
—bx +ay+bx,—ay, =0.
To find the coordinates (x,y) of the point p of intersection of
L and N we would need to solve simultaneously the equations
ax + by =—c,
—bx +ay =—bx, +ay,.
However as we wish to apply the distance formula, it is (x—x) +(r- i
that we shall actually use, and it is easier to work directly with it.
We rewrite the equations as
a(x—x,)+b(y—y)=—(ax, +by, + ¢)s
—b(x-x,)+a(y-y)=0.
Now on squaring each of these and adding, we find that
a*(x - x) +b(y- ) +2ab(x—x)(y- y)+b(x— x)
2
+a*(y-y,) —2ab(x - %)y -n)

=(ax, + by, + c)’ +07,

continued overleaf
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and so
(a* + bz)[(xv— %) +(y- yl)z] = (ax, + by, +¢)’.
Thus (a® +5%)|p, p* = (ax, + by, + ¢)’, and the result follows on dividing

across by a® +b* and then taking square roots.
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HIGHER LEVEL
CORE

THE DERIVATIVE OF Vx.

This result is listed in the syllabus under the heading of Functions and Calculus as:

*Derivations from first principles of x*, x’,
. i
sinx, cosx, Vx and —.
X

The asterisk indicates that a proof of this result may be examined.

The approach given here establishes the step

limvx+ 4 =+/x

h—0

rather than simply assuming it.

Let x>0. Then for A #0 such that x+h>0,

x+h++/x
N o N o M ey N P .o ALK
(*) Nx+h-x=(x &),_-Hhh/;
B (x+h)—x
w}x+h+\[;
_ h
Jx+h+x
Hence
— h|
+h—¢\/_=,__.l__—
b=
<—J/h—;, as vx+h>0.
Thus
lim «/x+h—«f;|=0
and so
Ling«/x+h=«/;.
But by (*)
«/x+h—«/;_ 1
h Jx+h++x
SO
) «/x+h—\/—); 1
lim————mm 8 —=——+—.
h—0 h 2\5
Hence
d 1
= Jx =——, forall x>0.
dx«f; W orall x
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HIGHER LEVEL
CORE

SOLUTION SETS OF INEQUALITIES

This topic is listed in the syllabus under the heading of Algebra as:

Inequalities: solution of inequalities of the form
g(x) <k, xeR, where g(x)=ax*+bx+c or
ax+b

g(x) - ex+d

Use of the notation |x|; solution of |x—a|<b.
The approach given here offers a systematic method of obtaining full solutions

Example. Find explicitly the set

A={xeR: 7‘)c_l3>1}.
5x—15

On bringing all the terms to one side, we see that
A={xeR: f(x)>0}
T%=13
h = -
where f(x) T
_ 2x+2
5x-15
_2(x+1)
5(x-3)
Let E be the set of points x such that either f(x)=0 or f(x) is undefined

through having 0 in a denominator.
Then

Solution.

E={-13}
and we write R\ E as a union of intervals
(oo, —1) U (-1,3) U (3,). :
We form the following table, using for the final row the fact that the product
or quotient of an even number of negative terms and any numberof positive

terms is positive,while the product or quotient of an odd number of negative
terms and any number of positive terms is negative.

‘ X < -1 -1 <x<3 x>3
L 2(x+1) neg pos pos
5(x-3) neg neg Pos
f(x)  pos neg __pos

From this we see that
A =(—o0,—1) U (3,).
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HIGHER LEVEL
CORE

FINITE DIFFERENCE EQUATIONS

This topic is listed in the syllabus under the heading of Discrete mathematics and statistics as:

Difference equations:
*If a and b are the roots of the quadratic equation px* +gx+r=0,

and s, =la" + mb" forall n, then ps,,, +gs,,, +rs, =0 forall n.

Examples of difference equations ps, ., +¢s,,, +rs, =0, (n20),

(with s,, s, given) to be solved, p, g, and r being specific numbers

n+l

and the quadratic equation px* + gx +r =0 having distinct roots.

The asterisk indicates that a proof of this result may be examined.
Equations of the form
PS,.0+ 48, +rs, =0, (n>0),
with
So=V, 8 =W,
are called homogeneous difference equations with constant coefficients, and
with initial conditions. Here p, ¢, r, v, w are given constants. We wish to

solve such equations for s, by giving an explicit formula for it.

Such equations have applications in the biological and social sciences. The
first recorded example of this type was
Sy =S —5,=0, (rn20),
with
5 =0, s =1,
due to Leonardo of Pisa (nicknamed Fibonacci) in 1202, in connection with the

breeding of rabbits.

The approach given here first sets out the theory and then presents a typical problem
with its solution.

1. Theory.

If a and b are the roots of the quadratic equation
(i) pxt+gx+r=0,

and

(ii) s, =la" +mb", forall n,
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then
(it) PSy0tqs,, trs, =0, forall n.
For then

n+2

Surz = 10"+ mb"? = la*a" + mb*b",

n+l

Spe = 1a"" +mb"* = laa" + mbb",
and so forall n

PSyia TGS,y TT5,

= p(laza" + mbzb") +q(laa" + mbb" ) +r(la" + mb")
= la"(pa2 +qga+ r) + mb"(pb2 +gb + r)
=la"(0)+mb"(0)

=0+0

=0.

2. Typical example.
Solve the difference equation

(iv) 28,,,=38,,+s5,=0 (n20)
subject to the initial conditions

W) so=-1, 5, =1.

Solution : -

The quadratic equation (i) is now
2x* -3x+1=0,

with roots

a=1,b= l
2
With this choice, (ii) becomes

(vi) s, =1(1)" + m(%)” =1+ m(%)’l,

and this satisfies the difference equation (iv). It remains to

satisfy the initial conditions

0
l+m(l) =-1,
2

1
l+m(l) =1.
2

continued overleaf
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Thus we have the simultaneous equations

I+m=-1,
I+ —l—m =1,
2
with solution
[=3, m=-4.

Thus our solution is

S =3—4(%) , foralln=0.

n
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HIGHER LEVEL
CORE AND OPTION

AN APPROACH TO THE DERIVATIVES OF EXPONENTIAL

AND LOGARITHMIC FUNCTIONS

These topics are listed in the syllabus under the heading of Functions and Calculus in the core
section and Further Calculus and Series in the optional section.

The discussion given here is intended to be of use in introducing the derivatives of exponential
and logarithmic functions. In some approaches, students are simply given the results as

established facts. Other approaches use the Maclaurin expansion of ex as a given, and the
series is differentiated term by term. There are drawbacks to all of these: the appearance of
results without a motivating discussion, the use of results from an option in establishing
results in the core, problems with the issue of convergence in an infinite series and so on.

The discussion which follows seeks to base the differentiation of the exponential function ex on
an argument from first principles. This approach is not specified in the syllabus and is not
therefore examinable material. The intention is rather to show the student that the

differentiation of ex may be approached in the same manner as that of Vx or sin x.

DISCUSSION

Powers a” (where a,b€R and a> 0) are introduced on the basis that they obey the laws

of indices which hold for positive integer powers b.

If we keep b fixed and replace a by a variable x, we are dealing with the familiar power
function

Slo)=x"

which has the derivative

filx) = b,

If instead we keep a fixed and replace b by a variable x, we are dealing with an
exponential function

g (x)=a".
It we seek to find the first derivative of this, we see that

v+h X

gx+h)—g(x) a™"-a

h h
a -1
= < av.
h
h
a =1
Now lim
-0 h
clearly must depend on «, so we write it as
h
o [@ =]
lim = k(a).
-0 f
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Then we have
g.(x) = k(a)a’

(1)

and it is a question of somehow identifying k(a).

Let us look at k(a").

We have g (x)= (a")'t =a“

and so

g, ()C + h) -8, ()C) ac(.\'+h) —4f

v

h h

ce+eh v

a

Now  limZ

Hence

g () =kla)e .a* = ck(a)a)

and so as from (i)
g W=ka)a) ¢
we have k(a") = ck(a)

We should like to choose a so that in (i) k(

.c, wheret=ch,

ii)
(iii)

a) has the simplest non - zero value,

i.e. k(a)=1. We approach this via (i) and (iii).

Given an a >0, let us choose ¢ so that

ck(a)=1.
Then with
1

e=a‘ =[a]x@), (iv)
we have

g.(x)=g.(x)
ie.

d . .

—e =e". \

= )
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If we do this, then by (iv) we have

e =g,
and so k(a)=1log,a.
Now (i) becomes
d .,
—a* =(lo a'. Vi
-4 =(log, a) (vi)

From its derivation e seems to depend on a, but in fact this is only apparent.
For suppose that as well as (v) we also had

d
i
Then
d . d
d " . [.l 6]\ — e]\ f_,‘
a8 |__ dx dx
dx\ e' e
Ry
_ee —ee
‘T_‘-
2
=0.
Thus for some constant C we have
e =Ce*

forall xeR. On putting x =0 in this we have C =1 and then on putting x =1

we have ¢ =e.

log, x

Now e =%

so on applying the chain rule we have

d
log,
e . —log x=1,
e 8.
S0 X ilo x=1
& g, ;
Thus, corresponding to (v), we have
LB TN (vii)
dx X
and as
log, x
log, x =——
log, a

corresponding to (vi) we have

I 1
—log, x = .
dx log, a

=
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On using the chain rule, we have from (vii) that

d 1
—log, (1+x)=—. viii
Tlog (1 +x) =7 (vii)
On using this for x =0, we have that
lim(loge(l +h)-log, 1) 1

A0 h

and so as log,1=0,
. (1
hl_r)rg(—ﬁloge(l + h)) =1;

In particular we can take h= l (n — ) and have

Sl

llm(nlog

Thus llm[loge 1 +— )

n—soo

and so limL(l + 1) ) =e. (ix)
n—yoo n

This can be used to approximate to the value of ¢ and show that
e=2.7182818284.........

If we reach the more advanced theory of calculus, as in the optional

section of the syllabus, that for some functions,
= () .
£() = F(O)+ ziTQ
j=1 :

where f(j )(O) is the j - th derivative of f evaluated at 0, then from (v)
we find that

2 3
e*=1+—7+5ﬁ+—7+ ............. (xeR)
and from (viii) that
x2 x3 )C4
log (1+x)=x——+———+ .00t x| <1).
g (l+x)=x-—+>-7 (I <1)

These series are the basis of the preparation of log. and antilog. tables.

If we put x =1 in the first of these, we find that
1 1 1
e=1+—F—+—F e ,
1t 2! 3!

a more useful form than (ix).
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HIGHER LEVEL
CORE AND OPTION

PRE-CALCULUS METHODS OF SKETCHING GRAPHS

The approach given below not only encourages the student to investigate some important
properties of a function in order to produce

a representative sketch of its graph, but also
provides a method to achieve this.

The features which are investi gated for each function f are

1. the behaviour of the function on [0,).

(i) In particular, if f(x) > 0, for all x in this interval,
then f is a positive function on [0,);

if f(x) < 0, for all x in this interval,
then f is a negative function on [0,)

(ii) In particular, if 0 < P <q and f(q) - f(p) >0,

then f is an increasing function on [0,00);
(check for boundedness)

if 0 < p<qand f(q) - f(p) <0,

then f is an decreasing function on [0,0) I
(check for boundedness)
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| (iii) In particular, if g(x) = ax,a> 0, and f(x) < g(x) &

' for all x in this interval; then the graph of f(x)

| will lie below that of the graph of g(x), a graph
well-known to students

points with coordinates ( p, f(p) ) , (q,f(q) ),
such that the equation of the chord uv is y = g(x),
and f(x) < g(x), for all x in the interval ( p, q),
then the graph of f(x) will lie below that of >
‘I the graph of g(x).

|
| (iv) In particular,if 0 <p<gq,and uand vare
|

f 2, the behaviour of the function on ( -, 0].

(i) Test for symmetry in the y-axis. Thatis, is
f(- x) = f(x) forall xin R ?

AN e

(ii)  Test for symmetry in the origin (0,0).
That is, is f( -x) = -f(x) forall xin R ?
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(1)

(ii)

(iii)

(iv)

the behaviour of af(x) ,

a=1

||
af(X) = f(X) /

0<ax<l1

af(x) < f(x)

a>1

af(x) > f(x)

a<o

Let a=-A,A> 0.

Then af(x) = - [ Af(x) |, the image of Af(x)
under axial symmetry in the x-axis.

\

note the behaviour of the root —b
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the behaviour of f(x) under a translation (0,0) -> (r.s)
We note that the graph (y -s)=f(x-r1) may be obtained from
the graph y = f(x) by translating the origin to the point (r.s),

the x-axis ( y=0) to the line y = s, and the y-axis ( x=0) to the
line x =T.

e
il o

note the behaviour of the root.
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Examples
Example 1.

For a fixed number a > 0, consider the function f defined by
f(x)=ax* (xeR).

We apply the procedure set out above.

1. the behaviour of the function on (0,~).

(i) In particular, if f(x) > 0, for all x in this interval,
then f is a positive function on (0,50);
(check for bounds)
We note that
f(0)=0, and f(x) > 0 forall x> 0.

(ii)  In particular, if 0 < P <qand f(q) - f(p) >0,
then f is an increasing function on [0,)

We note that
H4) = F(p)=aq* - ap® = a(g + p)(g - p).

Now a>0,
and g+p>0,asq,p > 0,
and g-p>0,as¢,p>0 and q>p.

Hence  a(g+p)(g- p) >0.

Thus fis an increasing function on [0,).

(iii) In particular, if g(x)=ax,a> 0, and f(x) < g2(x)
for all x in this interval; then the graph of f(x)
will lie below that of the graph of g(x), a graph
well-known to students
(check for boundedness)

We note
x2>x forall x> 1.

So ax’>ax forallx>1,
So  f(x)>ax forallx>1.

hence the graph of f(x) lies above that of g(x) for x > 1.

As f(x) > ax and ax increases without bound as x increases,
then f(x) increases without bound.
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(iv) In particular, if 0 <p <q,and u and v are
points with coordinates ( p, f(p) ) , ( q,f(q) ),
such that the equation of the chord uv is y = g(x),
and f(x) < g(x), for all x in the interval ( p, q),
then the graph of f(x) will lie below that of
the chord uv.

We note
If u and v are the points with coordinates

(p.ap*) and (g,aq"), then the line uv has slope

aq' —ap’ _alg-p)q+p) =aq-p). as g #p.
q-p q—-p

Thus the line uv has the equation

y-ap® =a(q-p)(x-p)
or  y=ap’+a(g-p)x-p)=8x)

Now f(x)- g(x) = ax* —[ap® +a(q - p)(x - p)]

= ax’ —ap* —a(q - p)(x - p)

= a(x + p)(x—p)—alg-p)(x-p)
a(x=p)x+p—(q-p)]
a(x - p)(x—q)

Now a>0,

and as x lies between p and g, p<x<g,
so x—p>0 ,
and x-¢<0.

Thus f(x) - g(x)=(+ term)(+ term)(— term) < 0.

Thus the graph of f(x) lies below the chord [uv] forp<x<gq.
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2. the behaviour of the function on ( -, 0].

(i) Test for symmetry in the y-axis. That is, is
f(- x)=f(x) forall xinR ?

We note
f(=x)=a(-x)* = ax® = f(x), forall x e R.

So we see that the graph is symmetrical about the y - axis.

3. the behaviour of af(x)

We have considered the case where a > 0.
We note

If <O, thenlet a=-A, A>0, and the graph y = Ax?
looks like the graph shown immediately above.

As ax? = —[sz], the graph y = ax® is the image

of the graph y = Ax® under axial symmetry in the x - axis.
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| 4. the behaviour of f(x) under a translation (0,0) -> (r,s)

We note

) ( b)z dac - b

ax*+bx+c=a/x+— | +———
2a da”

Ify=ax’+bx+c,

(- b )2 4ac — b*
then y=alx+— | +———
2a

50 _4m—b3_1{x+£J
e 4a® 2a)

Thus the graph of y=ax® + bx + ¢ is the image

of the graph of y = ax’® under the translation

(0,0)_>(i,4ac_bz j

2a’ 4d°

We conclude that the graph of y = ax® + bx +¢
has one of the shapes shown, accordingasa>0 or a<0.

\ A f

a>0 a<0
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Example 2.

Consider the function f defined by

flx)= L for all x = 0.
x

We apply the procedure set out above.
1. the behaviour of the function on (0,<). (note x = 0 )

(i) In particular, if f(x)> 0, for all x in this interval,
then f is a positive function on (0,00);
(check for bounds)
We note that
f(x)=_1_ >0 forall x>0.
X

As x decreases to 0, f(x) increases without bound.

As x increases without bound, f(x) becomes arbitrarily close to 0.

(ii)  In particular, if 0 < pP<qand f(q) - f(p) > 0,
then f is an increasing function on (0,00);

if 0 <p <qand f(q) - f(p) <0,
then fisa decreasing function on (0,00).

If 0<p<gq, then

fla)-fp)=1-Lo_a=r

q9 p pPq
thus f is a decreasing function on (0,00).

(iv)  In particular, if 0 < P<q,and uand v are
points with coordinates ( p, f(p)).(q,f(q)),
such that the equation of the chord uv s y = g(x),
and f(x) < g(x), for all x in the interval (p.9),
then the graph of f(x) will lie below that of
the chord uv.

If 0<p<gqg, and u,v are the points (p,i) and (ql)
p q

I 1

q p - |
then the line uv has the slope 4 P £24 . 1

9=p aplg-p) pg
and so it has the equation

1
y=—==—(x-p)

P pq
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that is,

pq _ gx  x(x-p)
pgx  pgx pax
q(p—x)+x(x - p)
pgx
(x—p)(x-4q)
pax
As O<p<x<gq, (x—p) is positive, (x~g) is negative, pgx is positive.

Thus f(x)—g(x)<0, for 0<p<x<gq.
That is, the graph of f lies below the chord uv.
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2. the behaviour of the function on ( -, 0).

(i)  Test for symmetry in the y-axis. That is, is
f(- x)=f(x)forall xinR ?

We note that

f(=x) L S =—f(x) forall x=0.
-X X

That is, the graph of f is not symmetrical in the y-axis, but is symmetrical about the origin.

4. the behaviour of f(x) under a translation

We see that the graph of

is the image of the graph of

under the translation for which (0, 0) = (a , 0), and so its graph has the following shape.

A

(a0)

(a>0)
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