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Solutions

1. The graph with vertex set C and edges consisting of pairs (a, b) with a +
b ∈ S is shown above and is seen to be bipartite and connected. It has a
unique bipartition as shown. Thus there are two possible solutions. A =
{1, 2, 5, 6, 10, 11, 14, 15, 16, 19, 20} and B = {3, 4, 7, 8, 9, 12, 13, 17, 18} or A =
{3, 4, 7, 8, 9, 12, 13, 17, 18} and B = {1, 2, 5, 6, 10, 11, 14, 15, 16, 19, 20}

2. Let O be the centre of the circle K. Join A to C and X to O. AC will pass
through O since 6 ABC = 90◦. Then 6 AFX = 6 FDE since FB is parallel
to EC and 6 FDE = 6 XAC since AXDC is cyclic. Therefore AO is tangent
to the circumcircle of AXF . Therefore XO is tangent to the circumcircle of
AXF since XO = AO and X lies on the circumcircle. Similarly XO is tan-
gent to the circumcircle of DXE. That is, the two circumcircles touch and
the common tangent XO passes through O.

3. There is only one such polynomial, namely f(x) = x10+x9+x8+x7+x6+x4+
x3+x2. To prove this, suppose that g is a polynomial with nonnegative integer
coefficients and that g(2) = 2012. Suppose further that some coefficient of g
is at least 2. Say that the coefficient of xk is at least 2. Let

h(x) = g(x)− 2xk + xk+1.

Then h has nonnegative integer coefficients, h(2) = g(2) = 2012 and h(1) <
g(1). By applying this observation repeatedly we can find some polynomial q
with coefficients 0 or 1 such that h(1) < g(1) Now, there is a unique poly-
nomial with coefficients 0 or 1 whose value at 2 is 2012, namely f(x) =
x10 + x9 + x8 + x7 + x6 + x4 + x3 + x2 (this follows from the uniqueness of
the binary representation of 2012). Thus, if p is a polynomial with nonegative
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integer coefficients such that p(2) = 2012 then p(1) ≥ f(1) = 8 with equality
if and only if p = f .

4. One triangle is easily found by finding the point D on BC in the given 5, 7,
8 triangle such that AB = AD = 7. The angle at C is the 60◦ angle. Then
cos 6 ACB = x

2+64−49
14x

= 1
2
. Therefore

x2 − 7x+ 15 = 0,

so x = 5 or x = 3. The solution x = 5 is the given triangle, and the solution
x = 3 gives a new triangle with sides 3, 7 and 8 that has the required properties.

In general, let ABC be any triangle with integer sides and ACB = 60◦. Let
BC = t and AC = t+ a and AB = t+ b where t is a positive rational, a and
b are integers and a > b. Then

cos 6 ACB = cos 60◦

⇒ (t+a)2+t
2−(t+b)2

2t(a−2b)
= 1

2

⇒ t(a− 2b) = b2 − a2

⇒ t = a
2−b

2

2b−a
.

From this, 2b must be greater than a. It can be shown that, in order to get
primitive triangles, a and b must be relatively prime but it is not necessary to
show that in this case. So the smallest possible choices for a and b are a = 3
and b = 2. These give t = 5 which gives the 5, 7, 8 triangle. If we choose
a = 4 and b = 3, we get t = 7

2
, which gives a triangle with sides 7

2
, 13

2
and

15
2
. Multiplying across by 2 gives the triangle with sides 7, 13 and 15. Taking

a = 5 and b = 3 gives the triangle with sides 3, 7 and 8 obtained above. All
the triangles satisfying the two conditions in the question can be generated in
this way. A final example is the triangle with sides 168, 223 and 253 given by
taking a = 17 and b = 11.

5. First Solution. Since

x3 + y3 = (x+ y)(x2 − xy + y2),

and
(x+ y)4 = x3 + 4x3y + 6x2y2 + 4xy3 + y4,

the stated inequality is equivalent to the statement that, for all x, y > 0,

x4 + 4x3y + 6x2y2 + 4xy3 + y4 = (x+ y)4 ≥ 12xy(x2 − xy + y2).

Hence, after transposing and rearranging the terms of this, the stated inequal-
ity is equivalent to the next one: ∀x, y >0

x4 − 8x3y + 18x2y2 − 8xy3 + y4 ≥ 0.
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But a little thoughtful experimentation shows that

x4 − 8x3y + 18x2y2 − 8xy3 + y4 = (x2 − 4xy + y2)2,

whence part (a) follows.

Clearly, there is equality iff x, y > 0 and x2 − 4xy + y2 = 0, i.e., when

(x− 2y)2 = 3y2, x = (2±
√
3)y.

Thus, the constant 12 is best possible because the inequality becomes an equal-
ity when

x = (2±
√
3)λ, y = λ,

where λ > 0, and only then. Hence, part (b) follows.

Second Solution. Since the polynomial expression

P (x, y) = (x+ y)5 − 12xy(x3 + y3)

is homogeneous of degree 5, i.e., P (tx, ty) = t5P (x, y), for all x, y, t, it’s enough
to prove the inequality when x, y > 0 and x + y = 1. Assuming this, and
making the substitution y = 1− x, we must show that P (x, 1− x) ≥ 0, i.e.,

12x(1− x)(x3 + (1− x)3) ≤ 1,

whenever 0 ≤ x ≤ 1. But

12x(1−x)(x3+(1−x)3) = 12x(1−x)(1−3x(1−x)) ≡ 4z(1−z), z = 3x(1−x),

and
4z(1− z) = 1− (2z − 1)2 ≤ 1, ∀z.

Hence, P (x, y) ≥ 0 if x, y > 0 and x + y = 1, and so the stated inequality
follows by homogeneity. This proves (a).

As for (b), there is equality in the last inequality iff z = 1/2, i.e., 6x(1−x) = 1,
i.e.,

x =
3±

√
3

3
.

And so, for such x, P (x, 1 − x) = P (1 − x, x) = 0. In other words, there is
equality in the given inequality if (x, y) is a positive multiple of

(3−
√
3

3
,

√
3

3

)

, or
(

√
3

3
,
3−

√
3

3

)

.

On the other hand, if P (x, y) = 0, for some positive x, y, then P (u, 1 − u) =
for some u ∈ [0, 1], which means that u = (3 −

√
3)/3, etc., and so either

x = tu, y = t(1− u) or x = s(1− u), y = su for some positive s, t.
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Third Solution. By homogeneity of P (x, y, it’s sufficient to prove that P (t, 1) ≥
0 for all t > 0. Equivalently, that

t4 − 8t3 + 18t2 − 8t+ 1 ≥ 0, ∀t > 0.

Observe the symmetry of the coefficients of this quartic polynomial. To exploit
this, divide across by t2 > 0 to get

t2 +
1

t2
− 8(t+

1

t
) + 18 ≥ 0

Let

s = t+
1

t
, so that s ≥ 2, and t2 +

1

t2
= s2 − 2,

whence we have to show that s2−8s+16 ≥ 0 for all s ≥ 2. But this is obvious.
Hence (a) holds.

Moreover, there is equality in the last statement iff s = 4, i.e., t = 2 ±
√
3,

etc.. Hence no constant smaller than 12 will do.
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