p-SERIES I (OF II)

Definition of a p-Series

Let p be a real number. Then we can consider the following sequence of real numbers

$$
1, \quad \frac{1}{2^{p}}, \quad \frac{1}{3^{p}}, \quad \frac{1}{4^{p}}, \quad \ldots
$$

This sequence can be expressed in a more compact form as

$$
\left(\frac{1}{n^{p}}\right)_{n \geq 1}
$$

Its corresponding series is expressed by

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

and we call this series a p-series. The elements of the p-series are:

$$
\begin{aligned}
& s_{1}=1 \\
& s_{2}=1+\frac{1}{2^{p}} \\
& s_{3}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}} \\
& s_{4}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}} \\
& \vdots \\
& s_{k}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\ldots+\frac{1}{k^{p}}, \quad \text { for } k \geq 1
\end{aligned}
$$

Note that the elements $\frac{1}{n^{p}}$ are strictly positive, for all $n \geq 1$ and all p. As $s_{k+1}=s_{k}+a_{k+1}$ (see the handout What is a Series I), we can tell that the sequence $\left(s_{k}\right)_{k \geq 1}$ of partial sums is strictly increasing. That means, there are only two possibilities for the limit of a p-series, either it has a finite limit or it diverges to plus infinity.

[^0] www.ndlr.com.

Examples of p-Series

For every real number p we get a different p-series. That means a p series is uniquely determined by the value of p.

Example 1.1: Let $p=1$. Then the sequence $\left(\frac{1}{n^{p}}\right)_{n \geq 1}$ becomes $\left(\frac{1}{n}\right)_{n \geq 1}$, and it consists of the elements

$$
1, \quad \frac{1}{2}, \quad \frac{1}{3}, \quad \frac{1}{4}, \ldots
$$

Now the corresponding p-series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

has the elements

$$
s_{1}=1, \quad s_{2}=\frac{3}{2}, \quad s_{3}=\frac{11}{6}, \quad s_{4}=\frac{25}{12},
$$

This p-series (that is, when $p=1$) is also known as the harmonic series.

Example 1.2: Let $p=2$. Then the sequence $\left(\frac{1}{n^{p}}\right)_{n \geq 1}$ becomes $\left(\frac{1}{n^{2}}\right)_{n \geq 1}$, and it consists of the elements

$$
1, \quad \frac{1}{4}, \quad \frac{1}{9}, \quad \frac{1}{16}, \quad \ldots
$$

The corresponding p-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

has the elements

$$
s_{1}=1, \quad s_{2}=\frac{5}{4}, \quad s_{3}=\frac{49}{36}, \quad s_{4}=\frac{205}{144}, \quad \ldots
$$

Example 1.3: Let $p=-2$. Then the sequence $\left(\frac{1}{n^{p}}\right)_{n \geq 1}$ becomes $\left(n^{2}\right)_{n \geq 1}$, and it consists of the elements

$$
1, \quad 4, \quad 9, \quad 16, \quad \ldots
$$

The corresponding p-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{-2}}=\sum_{n=1}^{\infty} n^{2}
$$

has the elements

$$
s_{1}=1, \quad s_{2}=5, \quad s_{3}=14, \quad s_{4}=30, \quad \ldots
$$

[^0]: Material developed by the Department of Mathematics \& Statistics, NUIM and supported by

