WHAT IS A SERIES I (OF III)

We need a sequence!

A series is always based on a sequence. So let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of real numbers. Then the first five elements in that sequence are

$$
a_{1} \quad a_{2} \quad a_{3} \quad a_{4} \quad a_{5} \quad \ldots
$$

It is not relevant that the index of the sequence starts at one. We could equally well consider a sequence $\left(b_{m}\right)_{m \geq 0}$ with the first five elements being

$$
\begin{array}{llllll}
b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & \ldots
\end{array}
$$

or a sequence $\left(c_{r}\right)_{r \geq 10}$ with the first five elements being

$$
c_{10} \quad c_{11} \quad c_{12} \quad c_{13} \quad c_{14} \quad \ldots
$$

or any other variation. However in the following we will always work with $\left(a_{n}\right)_{n \geq 1}$ as every sequence can be written in this fashion.

Example 1.1: Consider the sequence $a_{n}=2 n$, for $n \geq 1$. Then the first five elements of this particular sequence are

$$
a_{1}=2, \quad a_{2}=4, \quad a_{3}=6, \quad a_{4}=8, \quad a_{5}=10, \quad \ldots
$$

Partial Sums

We can use the elements of the sequence $\left(a_{n}\right)_{n \geq 1}$ to create sums. We define them as follows

$$
s_{k}=\sum_{n=1}^{k} a_{n}, \quad \text { for } k \geq 1
$$

Those sums s_{k} are called partial sums of the initial sequence $\left(a_{n}\right)_{n \geq 1}$. Observe how in each partial sum we add up more and more of the elements in the sequence $\left(a_{n}\right)_{n \geq 1}$. The first partial sum

$$
s_{1}=\sum_{n=1}^{1} a_{n}=a_{1}
$$

[^0]coincides with the first sequence element a_{1}. The second partial sum
$$
s_{2}=\sum_{n=1}^{2} a_{n}=a_{1}+a_{2}
$$
is the sum of the first two elements in the sequence, the third partial sum
$$
s_{3}=\sum_{n=1}^{3} a_{n}=a_{1}+a_{2}+a_{3}
$$
is the sum of the first three elements, the fourth partial sum
$$
s_{4}=\sum_{n=1}^{4} a_{n}=a_{1}+a_{2}+a_{3}+a_{4}
$$
is the sum of the first four elements and so on. Consequently the k-th partial sum
$$
s_{k}=\sum_{n=1}^{k} a_{n}=a_{1}+a_{2}+\cdots+a_{k}
$$
is the sum of the first k elements of the sequence.
That means we have generated an infinite number of partial sums $s_{1}, s_{2}, s_{3}, \ldots, s_{20}, s_{21}, \ldots, s_{1000}, \ldots$ Note that these partial sums form a sequence, which is called the sequence of the partial sums.

Also observe that each partial sum can be expressed in terms of its predecessor, as clearly

$$
s_{k+1}=s_{k}+a_{k+1}, \quad \text { for } k \geq 1
$$

Example 1.2: We continue with Example 1.1. There we get the following partial sums

$$
\begin{aligned}
& s_{1}=2 \\
& s_{2}=2+4=6 \\
& s_{3}=2+4+6=12 \\
& s_{4}=2+4+6+8=20 \\
& s_{5}=2+4+6+8+10=30 .
\end{aligned}
$$

and thus the sequence of partial sums is

$$
2, \quad 6, \quad 12, \quad 20, \quad 30, \quad \ldots
$$

[^0]: Material developed by the Department of Mathematics \& Statistics, NUIM and supported by www.ndlr.com.

