WHAT IS A SERIES I (OF III)

We need a sequence!

A series is always based on a sequence. So let $(a_n)_{n\geq 1}$ be a sequence of real numbers. Then the first five elements in that sequence are

$$a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5 \quad \dots$$

It is not relevant that the index of the sequence starts at one. We could equally well consider a sequence $(b_m)_{m\geq 0}$ with the first five elements being

$$b_0$$
 b_1 b_2 b_3 b_4 ...

or a sequence $(c_r)_{r>10}$ with the first five elements being

 c_{10} c_{11} c_{12} c_{13} c_{14} ...

or any other variation. However in the following we will always work with $(a_n)_{n\geq 1}$ as every sequence can be written in this fashion.

Example 1.1: Consider the sequence $a_n = 2n$, for $n \ge 1$. Then the first five elements of this particular sequence are

 $a_1 = 2, \quad a_2 = 4, \quad a_3 = 6, \quad a_4 = 8, \quad a_5 = 10, \quad \dots$

Partial Sums

We can use the elements of the sequence $(a_n)_{n\geq 1}$ to create sums. We define them as follows

$$s_k = \sum_{n=1}^k a_n, \quad \text{for } k \ge 1.$$

Those sums s_k are called **partial sums** of the initial sequence $(a_n)_{n\geq 1}$. Observe how in each partial sum we add up more and more of the elements in the sequence $(a_n)_{n\geq 1}$. The first partial sum

$$s_1 = \sum_{n=1}^{1} a_n = a_1,$$

Material developed by the Department of Mathematics & Statistics, NUIM and supported by www.ndlr.com.

coincides with the first sequence element a_1 . The second partial sum

$$s_2 = \sum_{n=1}^2 a_n = a_1 + a_2,$$

is the sum of the first two elements in the sequence, the third partial sum

$$s_3 = \sum_{n=1}^{3} a_n = a_1 + a_2 + a_3,$$

is the sum of the first three elements, the fourth partial sum

$$s_4 = \sum_{n=1}^{4} a_n = a_1 + a_2 + a_3 + a_4,$$

is the sum of the first four elements and so on. Consequently the k-th partial sum

$$s_k = \sum_{n=1}^k a_n = a_1 + a_2 + \dots + a_k.$$

is the sum of the first k elements of the sequence.

That means we have generated an infinite number of partial sums $s_1, s_2, s_3, \ldots, s_{20}, s_{21}, \ldots, s_{1000}, \ldots$ Note that these partial sums form a sequence, which is called the **sequence of the partial sums**.

Also observe that each partial sum can be expressed in terms of its predecessor, as clearly

$$s_{k+1} = s_k + a_{k+1}, \text{ for } k \ge 1.$$

Example 1.2: We continue with Example 1.1. There we get the following partial sums

$$s_{1} = 2$$

$$s_{2} = 2 + 4 = 6$$

$$s_{3} = 2 + 4 + 6 = 12$$

$$s_{4} = 2 + 4 + 6 + 8 = 20$$

$$s_{5} = 2 + 4 + 6 + 8 + 10 = 30.$$

$$\vdots$$

and thus the sequence of partial sums is

$$2, 6, 12, 20, 30, \ldots$$