WHAT IS A SERIES II (OF III)

Definition of a Series

Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence and $\left(s_{k}\right)_{k \geq 1}$ the corresponding sequence of partial sums. The sequence of partial sums

$$
s_{1}, \quad s_{2}, \quad s_{3}, \quad s_{4}, \ldots, \quad s_{1000}, \ldots
$$

is called the Series based on the sequence $\left(a_{n}\right)_{n \geq 1}$. It is common practice to denote the series based on the sequence $\left(a_{n}\right)_{n \geq 1}$ by the symbol

$$
\sum_{n=1}^{\infty} a_{n} .
$$

This notation is called sigma notation because of the use of the sum sign \sum, which is a capital sigma. Observe how this notation tells you everything you need to know about the sequence on which the series is based. It tells you that the underlying sequence is $\left(a_{n}\right)$ whose index n runs from 1 to infinity.

Example 2.1: Consider the sequence $a_{n}=2 n$, for $n \geq 1$, with the sequence elements

$$
a_{1}=2, \quad a_{2}=4, \quad a_{3}=6, \quad a_{4}=8, \quad a_{5}=10, \quad \ldots
$$

This sequence $\left(a_{n}\right)_{n \geq 1}$ gives rise to a series $\left(s_{k}\right)_{k \geq 1}$ (that is, the sequence of partial sums) with the following sequence elements

$$
s_{1}=2, \quad s_{2}=6, \quad s_{3}=12, \quad s_{4}=20, \quad s_{5}=30, \quad \ldots
$$

(Compare with Example 1.2 on the handout What is a Series I.)
Using sigma notation we can express this series as

$$
\sum_{n=1}^{\infty} 2 n .
$$

That means we have a correspondence between the sequence $(2 n)_{n \geq 1}$ and the series $\sum_{n=1}^{\infty} 2 n$, in the sense that the sequence gives rise to the series and the series is based on the sequence.

[^0]
Variations

Recall that the form of the initial sequence may vary. However it is always reflected in the series. For instance if the initial sequence is of the form $\left(b_{m}\right)_{m \geq 0}$, then the partial sums are given by

$$
\begin{aligned}
s_{0} & =\sum_{m=0}^{0} b_{m}=b_{0} \\
s_{1} & =\sum_{m=0}^{1} b_{m}=b_{0}+b_{1} \\
s_{2} & =\sum_{m=0}^{2} b_{m}=b_{0}+b_{1}+b_{2} \\
& \vdots \\
s_{k} & =\sum_{m=0}^{k} b_{m}, \quad \text { for } k \geq 0 .
\end{aligned}
$$

Hence the series corresponding to $\left(b_{m}\right)_{m \geq 0}$ is the sequence of partial sums $\left(s_{k}\right)_{k \geq 0}$, and we denoted this series by $\sum_{m=0}^{\infty} b_{m}$.

Likewise if the initial sequence is of the form $\left(c_{r}\right)_{r \geq 10}$, then the partial sums are given by

$$
\begin{aligned}
s_{10} & =\sum_{r=10}^{10} c_{r}=c_{10} \\
s_{11} & =\sum_{r=10}^{11} c_{r}=c_{10}+c_{11} \\
s_{12} & =\sum_{r=10}^{12} c_{r}=c_{10}+c_{11}+c_{12} \\
& \vdots \\
s_{k} & =\sum_{r=10}^{k} c_{r}, \quad \text { for } k \geq 10
\end{aligned}
$$

Now the series corresponding to $\left(c_{r}\right)_{r \geq 10}$ is the sequence of partial sums $\left(s_{k}\right)_{k \geq 10}$, and we denote this series by $\sum_{r=10}^{\infty} c_{r}$.

[^0]: Material developed by the Department of Mathematics \& Statistics, NUIM and supported by www.ndlr.com.

