WHAT IS A SERIES III (OF III)

Limit of a Series

Consider the sequence $\left(a_{n}\right)_{n \geq 1}$ with its corresponding series $\sum_{n=1}^{\infty} a_{n}$. Recall that this series is an infinite sequence $\left(s_{k}\right)_{k \geq 1}$. Hence we can ask about its limit, that is,

$$
\lim _{k \rightarrow \infty} s_{k}
$$

It is worthwhile to think about what this limit really means. The element s_{k} is the sum of the first k elements of the initial sequence $\left(a_{n}\right)_{n \geq 1}$, the element s_{k+1} is the sum of the first $k+1$ elements and so on. In fact we continue adding more and more of the elements of the initial sequence as the index k gets larger. That means, at infinity we get the sum of all elements of the initial sequence $\left(a_{n}\right)_{n \geq 1}$. However it is important to understand that in reality one never reaches infinity. But at least we can take a glimpse at the infinite sum of the sequence elements by studying what happens with the sequence of partial sums s_{k}, as k gets larger and larger. The notion of limits is the perfect tool to do that.
This idea of interpreting the limit of a series as the sum of all the elements in the initial sequence $\left(a_{n}\right)_{n \geq 1}$ is reflected in the symbol we use for the limit of a series, which is,

$$
\sum_{n=1}^{\infty} a_{n} .
$$

We have to be aware that this symbol now has two different meanings which are important to distinguish. On the one hand $\sum_{n=1}^{\infty} a_{n}$ denotes the series, that is, the sequence

$$
s_{k}=\sum_{n=1}^{k} a_{n}, \quad \text { for } k \geq 1
$$

[^0]On the other hand, if existent, it denotes the limit of the series, that is

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{k \rightarrow \infty} s_{k}=\lim _{k \rightarrow \infty} \sum_{n=1}^{k} a_{n}
$$

Possible Outcomes for the Limit

There are three possible outcomes for the limit of a series. Firstly the limit is some real number L, in which case we say the series converges to L, and write

$$
\sum_{n=1}^{\infty} a_{n}=L
$$

Secondly the limit is plus or minus infinity, in which case we say the series diverges to plus or minus infinity, respectively, and we write

$$
\sum_{n=1}^{\infty} a_{n}=\infty \quad \text { or } \quad \sum_{n=1}^{\infty} a_{n}=-\infty
$$

Thirdly the limit does not exist at all, in which case we say the series diverges and we write

$$
\sum_{n=1}^{\infty} a_{n} \text { does not exist. }
$$

The question we have to answer when we deal with series is which one of the three cases occurs for a given initial sequence $\left(a_{n}\right)_{n \geq 1}$.

Example 3.1: The sequence $a_{n}=2 n$, for $n \geq 1$, corresponds to the series $\sum_{n=1}^{\infty} 2 n$, with has the following elements

$$
s_{1}=2, \quad s_{2}=6, \quad s_{3}=12, \quad s_{4}=20, \quad s_{5}=30, \quad \ldots
$$

Observe how the sequence $\left(s_{k}\right)_{k \geq 1}$ of partial sums diverges to infinity. Indeed for any finite number M there is some k_{0} such that $s_{k}>M$, for all $k \geq k_{0}$. Hence we can conclude that this series diverges to plus infinity, that is,

$$
\sum_{n=1}^{\infty} 2 n=\infty
$$

[^0]: Material developed by the Department of Mathematics \& Statistics, NUIM and supported by www.ndlr.com.

