RATIO TEST

The Ratio Test

Let $\sum a_{n}$ be a series with non-zero terms a_{n}. Moreover suppose that

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lambda,
$$

(that is, $\left|\frac{a_{n+1}}{a_{n}}\right|$ tends to the value λ, as n tends to infinity. Here λ is allowed to be any finite number as well as ∞.) Then
(a) If $\lambda<1$, then $\sum a_{n}$ converges.
(b) If $\lambda>1$, then $\sum a_{n}$ does not converge.
(c) If $\lambda=1$, then the ratio test in inconclusive.

Remark 1.1: That means we need to determine $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ and if this limit exists and is different from one, then we can make a statement about the convergence of the given series $\sum a_{n}$. The ratio test is very effective with factorials and combination of factorials and powers.

Example 1.2: Consider the series $\sum_{n=1}^{\infty} \frac{1}{n!}$. Then the underlying sequence is

$$
a_{n}=\frac{1}{n!}, \quad \text { for all } n \geq 1
$$

and clearly all sequence elements are non-zero (which is one of the conditions that need to be satisfied to apply the ratio test). Furthermore we need to understand $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$. We have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{1}{(n+1)!}}{\frac{1}{n!}}=\frac{n!}{(n+1)!}=\frac{1}{n+1} .
$$

So $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0<1$, and thus $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges.
Material developed by the Department of Mathematics \& Statistics, NUIM and supported by www.ndlr.com.

Example 1.3: Consider the series $\sum_{n=1}^{\infty} \frac{n!}{10^{n}}$. Then

$$
a_{n}=\frac{n!}{10^{n}}, \quad \text { for all } n \geq 1
$$

and all sequence elements are non-zero. Furthermore we have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)!}{10^{n+1}} \cdot \frac{10^{n}}{n!}=\frac{(n+1)!}{n!} \cdot \frac{10^{n}}{10^{n+1}}=\frac{n+1}{10}
$$

Hence $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{10}=\infty>1$, and so $\sum_{n=1}^{\infty} \frac{n!}{10^{n}}$ does not converge, by the ratio test. As all elements of the underlying sequence a_{n} are positive we conclude that the series diverges to plus infinity.

Example 1.4: Consider the series $\sum_{n=1}^{\infty} \frac{1}{2 n+1}$. Then

$$
a_{n}=\frac{1}{2 n+1}, \quad \text { for all } n \geq 1
$$

and all sequence elements are non-zero. Furthermore we have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{2(n+1)+1} \cdot \frac{2 n+1}{1}=\frac{2 n+1}{2 n+3}=\frac{2+\frac{1}{n}}{2+\frac{3}{n}}
$$

So $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{2+\frac{1}{n}}{2+\frac{3}{n}}=1$, which means that the ratio test is inconclusive. Nevertheless one can still determine that the series $\sum_{n=1}^{\infty} \frac{1}{2 n+1}$ diverges to infinity, for instance, by means of the comparison test (see Example 2.2 on the handout Basic Comparison Test II).

Example 1.5: The alternating series $\sum_{n=-10}^{\infty}\left(\frac{-1}{100}\right)^{n}$ converges, (see Example 3.2 on the handout Alternating Series III). We can also apply the ratio test to show convergence. The underlying sequence is given by $a_{n}=\left(\frac{-1}{100}\right)^{n}$, for all $n \geq-10$, and all sequence elements are non-zero. Furthermore we have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\left(\frac{-1}{10}\right)^{n+1}}{\left(\frac{-1}{100}\right)^{n}}\right|=\left|\frac{-1}{100}\right|=\frac{1}{100} .
$$

So $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{100}<1$, and thus $\sum_{n=-10}^{\infty}\left(\frac{-1}{100}\right)^{n}$ converges.

