
LIMIT COMPARISON TEST I (OF II)

Limit Comparison Test

Let (an)n≥0 and (bn)n≥0 be two positive sequences such that lim
n→∞

an
bn

exists. Set
L := lim

n→∞

an
bn

.

(Note that L is a non-negative real number or L =∞.) Then

(1) If L <∞ and
∞∑
n=0

bn converges, then
∞∑
n=0

an also converges.

(2) If L > 0 and
∞∑
n=0

bn diverges to ∞, then
∞∑
n=0

an diverges to ∞.

Remark 1.1: So if we want to learn something about the series
∑

an,
the limit comparison test suggests that we should look for an appropri-
ate series

∑
bn, where the underlying sequences (an) and (bn) behave

similarly in the sense that lim
n→∞

an
bn

exists. Then the convergent be-

haviour of the series
∑

an coincides with that of the series
∑

bn, that
is, if we understand how

∑
bn behaves then we understand

∑
an.

Example 1.2: Consider the series
∞∑
n=1

2
√
n + 3

n2
√
n + 4

√
n

. Then the un-

derlying sequence is

an =
2
√
n + 3

n2
√
n + 4

√
n
, for all n ≥ 1,

and all sequence elements are positive. In order to apply the limit com-
parison test successfully we need to find a second sequence (bn)n≥1 that
behaves similarly to (an)n≥1 and where, in addition, we know whether
the series

∑
bn converges or diverges.

Note that as n grows bigger the numerator of an is dominated by 2
√
n.

(That means the influence of the term 2
√
n on the numerator increases,

whereas the influence of the term 3 remains the same.) Looking at the
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denominator we see that it is dominated by n2
√
n. (Here the remaining

term 4
√
n also increases with an increasing n, but not as fast as n2

√
n.)

This reasoning tells us that, for large n, the element an is similar to
2
√
n

n2
√
n

which equals to
2

n2
, and thus we choose

bn =
2

n2
, for n ≥ 1.

We see that (bn)n≥1 is a positive sequence, and

L = lim
n→∞

an
bn

= lim
n→∞

2
√
n + 3

n2
√
n + 4

√
n
· n

2

2
= lim

n→∞

2n2
√
n + 3n2

2n2
√
n + 8

√
n

= lim
n→∞

2 + 3√
n

2 + 8
n2

=
2

2
= 1.

In particular L exists and is finite, (hence our choice of bn was good).
Furthermore

∞∑
n=1

2

n2
= 2 ·

∞∑
n=1

1

n2

is a p-series where p = 2. Therefore it converges. (For more details
refer to the handouts on p-series.) Now part (1) of the limit comparison

test implies that
∞∑
n=1

2
√
n + 3

n2
√
n + 4

√
n

converges as well.

Example 1.3: Consider the series
∞∑
n=1

1

2n(n + 1)
. Here the under-

lying sequence is an =
1

2n(n + 1)
, for all n ≥ 1. Let bn =

1

2n
, for n ≥ 1.

Then (bn)n≥1 is a positive sequence, and

L = lim
n→∞

an
bn

= lim
n→∞

1

2n(n + 1)
· 2n

1
= lim

n→∞

1

n + 1
= 0.

In particular L exists and is finite. Finally
∞∑
n=1

1

2n
=
∞∑
n=1

(
1

2

)n

is a geometric series where x =
1

2
, and thus converges (see also Exam-

ple 1.3 on the handout Geometric Series I). By part (1) of the limit

comparison test we can now conclude that
∞∑
n=1

1

2n(n + 1)
converges.


