LIMIT COMPARISON TEST I (OF II)

Limit Comparison Test

Let $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ be two positive sequences such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists. Set

$$
L:=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} .
$$

(Note that L is a non-negative real number or $L=\infty$.) Then
(1) If $L<\infty$ and $\sum_{n=0}^{\infty} b_{n}$ converges, then $\sum_{n=0}^{\infty} a_{n}$ also converges.
(2) If $L>0$ and $\sum_{n=0}^{\infty} b_{n}$ diverges to ∞, then $\sum_{n=0}^{\infty} a_{n}$ diverges to ∞.

Remark 1.1: So if we want to learn something about the series $\sum a_{n}$, the limit comparison test suggests that we should look for an appropriate series $\sum b_{n}$, where the underlying sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ behave similarly in the sense that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists. Then the convergent behaviour of the series $\sum a_{n}$ coincides with that of the series $\sum b_{n}$, that is, if we understand how $\sum b_{n}$ behaves then we understand $\sum a_{n}$.

Example 1.2: Consider the series $\sum_{n=1}^{\infty} \frac{2 \sqrt{n}+3}{n^{2} \sqrt{n}+4 \sqrt{n}}$. Then the underlying sequence is

$$
a_{n}=\frac{2 \sqrt{n}+3}{n^{2} \sqrt{n}+4 \sqrt{n}}, \quad \text { for all } n \geq 1
$$

and all sequence elements are positive. In order to apply the limit comparison test successfully we need to find a second sequence $\left(b_{n}\right)_{n \geq 1}$ that behaves similarly to $\left(a_{n}\right)_{n \geq 1}$ and where, in addition, we know whether the series $\sum b_{n}$ converges or diverges.

Note that as n grows bigger the numerator of a_{n} is dominated by $2 \sqrt{n}$. (That means the influence of the term $2 \sqrt{n}$ on the numerator increases, whereas the influence of the term 3 remains the same.) Looking at the

[^0]denominator we see that it is dominated by $n^{2} \sqrt{n}$. (Here the remaining term $4 \sqrt{n}$ also increases with an increasing n, but not as fast as $n^{2} \sqrt{n}$.) This reasoning tells us that, for large n, the element a_{n} is similar to $\frac{2 \sqrt{n}}{n^{2} \sqrt{n}}$ which equals to $\frac{2}{n^{2}}$, and thus we choose
$$
b_{n}=\frac{2}{n^{2}}, \quad \text { for } n \geq 1
$$

We see that $\left(b_{n}\right)_{n \geq 1}$ is a positive sequence, and

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{2 \sqrt{n}+3}{n^{2} \sqrt{n}+4 \sqrt{n}} \cdot \frac{n^{2}}{2}=\lim _{n \rightarrow \infty} \frac{2 n^{2} \sqrt{n}+3 n^{2}}{2 n^{2} \sqrt{n}+8 \sqrt{n}} \\
& =\lim _{n \rightarrow \infty} \frac{2+\frac{3}{\sqrt{n}}}{2+\frac{8}{n^{2}}}=\frac{2}{2}=1
\end{aligned}
$$

In particular L exists and is finite, (hence our choice of b_{n} was good). Furthermore

$$
\sum_{n=1}^{\infty} \frac{2}{n^{2}}=2 \cdot \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

is a p-series where $p=2$. Therefore it converges. (For more details refer to the handouts on p-series.) Now part (1) of the limit comparison test implies that $\sum_{n=1}^{\infty} \frac{2 \sqrt{n}+3}{n^{2} \sqrt{n}+4 \sqrt{n}}$ converges as well.
Example 1.3: Consider the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}(n+1)}$. Here the underlying sequence is $a_{n}=\frac{1}{2^{n}(n+1)}$, for all $n \geq 1$. Let $b_{n}=\frac{1}{2^{n}}$, for $n \geq 1$. Then $\left(b_{n}\right)_{n \geq 1}$ is a positive sequence, and

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1}{2^{n}(n+1)} \cdot \frac{2^{n}}{1}=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0 .
$$

In particular L exists and is finite. Finally

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}
$$

is a geometric series where $x=\frac{1}{2}$, and thus converges (see also Example 1.3 on the handout Geometric Series I). By part (1) of the limit comparison test we can now conclude that $\sum_{n=1}^{\infty} \frac{1}{2^{n}(n+1)}$ converges.

[^0]: Material developed by the Department of Mathematics \& Statistics, NUIM and supported by www.ndlr.com.

