
INTEGRAL TEST II (OF II)

Example 2.1: Consider the p-series
∞∑
n=1

1

n2
. We know this series con-

verges. (See the handout p-Series II). We use the integral test to verify
this fact. The underlying sequence

(
1
n2

)
n≥1 can be linked to the func-

tion f(x) = 1
x2 , for x ≥ 1, that is,

∞∑
n=1

1

n2
=
∞∑
n=1

f(n).

We need to check that f is continuous, positive and decreasing on the
interval [1,∞). It is not hard to show these properties for the given
function f(x) = 1

x2 and we omit the details here. However in Example
2.3 we show how one can verify such those properties generally.

Next we calculate∫ ∞
1

1

x2
dx = lim

t→∞

∫ t

1

1

x2
dx = lim

t→∞

[
−1

x

]t
1

= lim
t→∞

−1

t
+ 1 = 1

Hence

∫ ∞
1

1

x2
converges. Therefore, by the integral test, the p-series

∞∑
n=1

1

n2
converges as well.

Remark 2.2: Observe that Example 2.1 can be repeated for any p-

series
∞∑
n=1

1

np
. If p > 1 we obtain convergence and if p ≤ 1 we obtain

divergence to infinity (see also Example 1.3 on the handout Integral
Test I, where we dealt with the case p = 1). In particular this confirms
the rules about the limit of p-series as given on handout p-Series II.

Example 2.3: Consider the series
∞∑
n=1

ne−n
2

. Observe that we can

link the underlying sequence (ne−n
2
)n≥1 of this series to the function

f(x) := xe−x
2
, for x ≥ 1. Then f(n) = ne−n

2
, for all n ≥ 1, and
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consequently
∞∑
n=1

ne−n
2

=
∞∑
n=1

f(n). Furthermore we can tell that f

is both continuous and positive on the interval [1,∞), since it is the

product of the two continuous and positive functions x and e−x
2
, (note

that x ≥ 1). Next we show that f is decreasing. This can be done by
studying the derivative of f . Using the product rule we obtain

f ′(x) = 1 · e−x2

+ x · (−2xe−x
2

) = e−x
2 · (1− 2x2).

But since e−x
2
> 0, for all x ∈ R and 1 − 2x2 < 0, for all x ≥ 1 we

conclude that f ′(x) < 0, for all x ≥ 1. Hence f has a negative slope,
and thus is decreasing on the interval [1,∞).

Therefore f satisfies the conditions that are necessary to apply the in-

tegral test. The test requires us to calculate the integral

∫ ∞
1

xe−x
2

dx.

First we observe that∫ ∞
1

xe−x
2

dx = lim
t→∞

∫ t

1

xe−x
2

dx.

In order to solve the integral on the right-hand side we use the substi-
tution u = −x2. Then du = −2x dx and the integration limits (1, t)
for x change to the integration limits (−1,−t2) for u. Therefore∫ t

1

xe−x
2

dx =

∫ −t2
−1

eu

−2
du =

[
eu

−2

]−t2
−1

=
e−t

2

−2
− e−1

−2
.

Observe that as t tends to infinity, e−t
2

tends towards zero. Thus∫ ∞
1

xe−x
2

dx = lim
t→∞

∫ t

1

xe−x
2

dx = −e−1

−2
=

1

2e
.

Hence we have shown that

∫ ∞
1

xe−x
2

dx converges, and thus by the

integral test, we conclude that the series
∞∑
n=1

ne−n
2

converges.

Note that the integral test only allows us to conclude that the se-

ries
∞∑
n=1

ne−n
2

converges, but it does not say anything about its limit.

In particular it is incorrect to claim that
∞∑
n=1

ne−n
2

converges towards

1

2e
just because

∫ ∞
1

xe−x
2

dx =
1

2e
.


