INTEGRAL TEST II (OF II)

Example 2.1: Consider the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^2}$. We know this series converges. (See the handout *p*-Series II). We use the integral test to verify this fact. The underlying sequence $(\frac{1}{n^2})_{n\geq 1}$ can be linked to the function $f(x) = \frac{1}{x^2}$, for $x \geq 1$, that is,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} f(n).$$

We need to check that f is continuous, positive and decreasing on the interval $[1, \infty)$. It is not hard to show these properties for the given function $f(x) = \frac{1}{x^2}$ and we omit the details here. However in Example 2.3 we show how one can verify such those properties generally.

Next we calculate

$$\int_{1}^{\infty} \frac{1}{x^2} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^2} dx = \lim_{t \to \infty} \left[\frac{-1}{x} \right]_{1}^{t} = \lim_{t \to \infty} \frac{-1}{t} + 1 = 1$$

Hence $\int_{1}^{\infty} \frac{1}{x^2}$ converges. Therefore, by the integral test, the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges as well.

Remark 2.2: Observe that Example 2.1 can be repeated for any p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$. If p > 1 we obtain convergence and if $p \leq 1$ we obtain divergence to infinity (see also Example 1.3 on the handout Integral Test I, where we dealt with the case p = 1). In particular this confirms the rules about the limit of p-series as given on handout p-Series II.

Example 2.3: Consider the series $\sum_{n=1}^{\infty} ne^{-n^2}$. Observe that we can link the underlying sequence $(ne^{-n^2})_{n\geq 1}$ of this series to the function $f(x) := xe^{-x^2}$, for $x \geq 1$. Then $f(n) = ne^{-n^2}$, for all $n \geq 1$, and

Material developed by the Department of Mathematics & Statistics, NUIM and supported by www.ndlr.com.

consequently $\sum_{n=1}^{\infty} ne^{-n^2} = \sum_{n=1}^{\infty} f(n)$. Furthermore we can tell that f

is both continuous and positive on the interval $[1, \infty)$, since it is the product of the two continuous and positive functions x and e^{-x^2} , (note that $x \ge 1$). Next we show that f is decreasing. This can be done by studying the derivative of f. Using the product rule we obtain

$$f'(x) = 1 \cdot e^{-x^2} + x \cdot (-2xe^{-x^2}) = e^{-x^2} \cdot (1 - 2x^2).$$

But since $e^{-x^2} > 0$, for all $x \in \mathbb{R}$ and $1 - 2x^2 < 0$, for all $x \ge 1$ we conclude that f'(x) < 0, for all $x \ge 1$. Hence f has a negative slope, and thus is decreasing on the interval $[1, \infty)$.

Therefore f satisfies the conditions that are necessary to apply the integral test. The test requires us to calculate the integral $\int_{1}^{\infty} xe^{-x^2} dx$. First we observe that

$$\int_{1}^{\infty} x e^{-x^2} \, dx = \lim_{t \to \infty} \int_{1}^{t} x e^{-x^2} \, dx.$$

In order to solve the integral on the right-hand side we use the substitution $u = -x^2$. Then du = -2x dx and the integration limits (1, t) for x change to the integration limits $(-1, -t^2)$ for u. Therefore

$$\int_{1}^{t} x e^{-x^{2}} dx = \int_{-1}^{-t^{2}} \frac{e^{u}}{-2} du = \left[\frac{e^{u}}{-2}\right]_{-1}^{-t^{2}} = \frac{e^{-t^{2}}}{-2} - \frac{e^{-1}}{-2}$$

Observe that as t tends to infinity, e^{-t^2} tends towards zero. Thus

$$\int_{1}^{\infty} x e^{-x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} x e^{-x^{2}} dx = -\frac{e^{-1}}{-2} = \frac{1}{2e}$$

Hence we have shown that $\int_{1}^{\infty} x e^{-x^2} dx$ converges, and thus by the integral test, we conclude that the series $\sum_{n=1}^{\infty} n e^{-n^2}$ converges.

Note that the integral test only allows us to conclude that the series $\sum_{n=1}^{\infty} ne^{-n^2}$ converges, but it does not say anything about its limit.

In particular it is **incorrect** to claim that $\sum_{n=1}^{\infty} ne^{-n^2}$ converges towards $\frac{1}{2e}$ just because $\int_{1}^{\infty} xe^{-x^2} dx = \frac{1}{2e}$.