INTEGRAL TEST II (OF II)

Example 2.1: Consider the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. We know this series converges. (See the handout p-Series II). We use the integral test to verify this fact. The underlying sequence $\left(\frac{1}{n^{2}}\right)_{n \geq 1}$ can be linked to the function $f(x)=\frac{1}{x^{2}}$, for $x \geq 1$, that is,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\sum_{n=1}^{\infty} f(n)
$$

We need to check that f is continuous, positive and decreasing on the interval $[1, \infty)$. It is not hard to show these properties for the given function $f(x)=\frac{1}{x^{2}}$ and we omit the details here. However in Example 2.3 we show how one can verify such those properties generally.

Next we calculate

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty}\left[\frac{-1}{x}\right]_{1}^{t}=\lim _{t \rightarrow \infty} \frac{-1}{t}+1=1
$$

Hence $\int_{1}^{\infty} \frac{1}{x^{2}}$ converges. Therefore, by the integral test, the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges as well.
Remark 2.2: Observe that Example 2.1 can be repeated for any p series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$. If $p>1$ we obtain convergence and if $p \leq 1$ we obtain divergence to infinity (see also Example 1.3 on the handout Integral Test I, where we dealt with the case $p=1$). In particular this confirms the rules about the limit of p-series as given on handout p-Series II.

Example 2.3: Consider the series $\sum_{n=1}^{\infty} n e^{-n^{2}}$. Observe that we can link the underlying sequence $\left(n e^{-n^{2}}\right)_{n \geq 1}$ of this series to the function $f(x):=x e^{-x^{2}}$, for $x \geq 1$. Then $f(n)=n e^{-n^{2}}$, for all $n \geq 1$, and

[^0]consequently $\sum_{n=1}^{\infty} n e^{-n^{2}}=\sum_{n=1}^{\infty} f(n)$. Furthermore we can tell that f is both continuous and positive on the interval $[1, \infty)$, since it is the product of the two continuous and positive functions x and $e^{-x^{2}}$, (note that $x \geq 1$). Next we show that f is decreasing. This can be done by studying the derivative of f. Using the product rule we obtain
$$
f^{\prime}(x)=1 \cdot e^{-x^{2}}+x \cdot\left(-2 x e^{-x^{2}}\right)=e^{-x^{2}} \cdot\left(1-2 x^{2}\right)
$$

But since $e^{-x^{2}}>0$, for all $x \in \mathbb{R}$ and $1-2 x^{2}<0$, for all $x \geq 1$ we conclude that $f^{\prime}(x)<0$, for all $x \geq 1$. Hence f has a negative slope, and thus is decreasing on the interval $[1, \infty)$.

Therefore f satisfies the conditions that are necessary to apply the integral test. The test requires us to calculate the integral $\int_{1}^{\infty} x e^{-x^{2}} d x$. First we observe that

$$
\int_{1}^{\infty} x e^{-x^{2}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} x e^{-x^{2}} d x
$$

In order to solve the integral on the right-hand side we use the substitution $u=-x^{2}$. Then $d u=-2 x d x$ and the integration limits $(1, t)$ for x change to the integration limits $\left(-1,-t^{2}\right)$ for u. Therefore

$$
\int_{1}^{t} x e^{-x^{2}} d x=\int_{-1}^{-t^{2}} \frac{e^{u}}{-2} d u=\left[\frac{e^{u}}{-2}\right]_{-1}^{-t^{2}}=\frac{e^{-t^{2}}}{-2}-\frac{e^{-1}}{-2}
$$

Observe that as t tends to infinity, $e^{-t^{2}}$ tends towards zero. Thus

$$
\int_{1}^{\infty} x e^{-x^{2}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} x e^{-x^{2}} d x=-\frac{e^{-1}}{-2}=\frac{1}{2 e}
$$

Hence we have shown that $\int_{1}^{\infty} x e^{-x^{2}} d x$ converges, and thus by the integral test, we conclude that the series $\sum_{n=1}^{\infty} n e^{-n^{2}}$ converges.

Note that the integral test only allows us to conclude that the series $\sum_{n=1}^{\infty} n e^{-n^{2}}$ converges, but it does not say anything about its limit. In particular it is incorrect to claim that $\sum_{n=1}^{\infty} n e^{-n^{2}}$ converges towards $\frac{1}{2 e}$ just because $\int_{1}^{\infty} x e^{-x^{2}} d x=\frac{1}{2 e}$.

[^0]: Material developed by the Department of Mathematics \& Statistics, NUIM and supported by www.ndlr.com.

