GEOMETRIC SERIES I (OF II)

Definition of a Geometric Series

Let x be a real number. Then we can consider the following sequence of real numbers

$$
1, \quad x, \quad x^{2}, \quad x^{3}, \quad x^{4}, \quad x^{5}, \quad \ldots
$$

This sequence can be expressed in a more compact form as

$$
\left(x^{n}\right)_{n \geq 0} .
$$

For every sequence there is the corresponding series, or sequence of partial sums. In our case the corresponding series is expressed by

$$
\sum_{n=0}^{\infty} x^{n}
$$

and we call this series the geometric series. The elements of the geometric series are:

$$
\begin{aligned}
& s_{0}=1 \\
& s_{1}=1+x \\
& s_{2}=1+x+x^{2} \\
& s_{3}=1+x+x^{2}+x^{3} \\
& \vdots \\
& s_{k}=\sum_{n=0}^{k} x^{n}, \quad \text { for } k \geq 0
\end{aligned}
$$

Examples of Geometric Series

For every real number x we get a different geometric series. That means a geometric series is uniquely determined by the value of x.

Example 1.1: Let $x=1$. Then the sequence $\left(x^{n}\right)_{n \geq 0}$ consists of the following elements

$$
x^{0}=1, \quad x^{1}=1, \quad x^{2}=1, \quad x^{3}=1, \quad x^{4}=1, \ldots
$$

[^0]That is, all elements are equal to one. Now the corresponding geometric series

$$
\sum_{n=0}^{\infty} 1
$$

has the elements

$$
s_{0}=1, \quad s_{1}=2, \quad s_{2}=3, \quad s_{3}=4, \quad s_{4}=5, \quad \ldots
$$

Example 1.2 If $x=-2$, then the sequence $\left(x^{n}\right)_{n \geq 0}$ consists of the elements

$$
x^{0}=1, \quad x^{1}=-2, \quad x^{2}=4, \quad x^{3}=-8, \quad x^{4}=16, \ldots
$$

and the corresponding geometric series

$$
\sum_{n=0}^{\infty}(-2)^{n}
$$

has the elements

$$
s_{0}=1, \quad s_{1}=-1, \quad s_{2}=3, \quad s_{3}=-5, \quad s_{4}=11, \quad \ldots
$$

Example 1.3 If $x=\frac{1}{2}$, then the sequence $\left(x^{n}\right)_{n \geq 0}$ consists of the elements

$$
x^{0}=1, \quad x^{1}=\frac{1}{2}, \quad x^{2}=\frac{1}{4}, \quad x^{3}=\frac{1}{8}, \quad x^{4}=\frac{1}{16}, \ldots
$$

and the corresponding geometric series

$$
\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}
$$

has the elements

$$
s_{0}=1, \quad s_{1}=\frac{3}{2}, \quad s_{2}=\frac{7}{4}, \quad s_{3}=\frac{15}{8}, \quad s_{4}=\frac{31}{16}, \quad \ldots
$$

Remark 1.4: See handout Geometric Series II for a discussion/ explanation of the convergence of the geometric series.

[^0]: Material developed by the Department of Mathematics \& Statistics, NUIM and supported by www.ndlr.com.

