GEOMETRIC SERIES I (OF II)

Definition of a Geometric Series

Let x be a real number. Then we can consider the following sequence of real numbers

$$1, x, x^2, x^3, x^4, x^5, \ldots$$

This sequence can be expressed in a more compact form as

$$(x^n)_{n\geq 0}.$$

For every sequence there is the corresponding series, or sequence of partial sums. In our case the corresponding series is expressed by

$$\sum_{n=0}^{\infty} x^n$$

and we call this series the **geometric series**. The elements of the geometric series are:

$$s_{0} = 1$$

$$s_{1} = 1 + x$$

$$s_{2} = 1 + x + x^{2}$$

$$s_{3} = 1 + x + x^{2} + x^{3}$$

$$\vdots$$

$$s_{k} = \sum_{n=0}^{k} x^{n}, \text{ for } k \ge 0$$

Examples of Geometric Series

For every real number x we get a different geometric series. That means a geometric series is uniquely determined by the value of x.

Example 1.1: Let x = 1. Then the sequence $(x^n)_{n \ge 0}$ consists of the following elements

$$x^0 = 1$$
, $x^1 = 1$, $x^2 = 1$, $x^3 = 1$, $x^4 = 1$,...

Material developed by the Department of Mathematics & Statistics, NUIM and supported by www.ndlr.com.

That is, all elements are equal to one. Now the corresponding geometric series

$$\sum_{n=0}^{\infty} 1$$

has the elements

$$s_0 = 1$$
, $s_1 = 2$, $s_2 = 3$, $s_3 = 4$, $s_4 = 5$, ...

Example 1.2 If x = -2, then the sequence $(x^n)_{n\geq 0}$ consists of the elements

$$x^{0} = 1$$
, $x^{1} = -2$, $x^{2} = 4$, $x^{3} = -8$, $x^{4} = 16$,...

and the corresponding geometric series

$$\sum_{n=0}^{\infty} (-2)^n$$

has the elements

$$s_0 = 1$$
, $s_1 = -1$, $s_2 = 3$, $s_3 = -5$, $s_4 = 11$, ...

Example 1.3 If $x = \frac{1}{2}$, then the sequence $(x^n)_{n\geq 0}$ consists of the elements

$$x^{0} = 1, \quad x^{1} = \frac{1}{2}, \quad x^{2} = \frac{1}{4}, \quad x^{3} = \frac{1}{8}, \quad x^{4} = \frac{1}{16}, \dots$$

and the corresponding geometric series

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$

has the elements

$$s_0 = 1$$
, $s_1 = \frac{3}{2}$, $s_2 = \frac{7}{4}$, $s_3 = \frac{15}{8}$, $s_4 = \frac{31}{16}$, ...

Remark 1.4: See handout Geometric Series II for a discussion/ explanation of the convergence of the geometric series.

 2